{"title":"Lactylation and regulated cell death","authors":"Wenlong Zhang , Guangyao Shan , Guoshu Bi, Zhengyang Hu, Yanjun Yi, Dejun Zeng, Zongwu Lin, Cheng Zhan","doi":"10.1016/j.bbamcr.2025.119927","DOIUrl":null,"url":null,"abstract":"<div><div>Lactylation, a newly identified post-translational modification, entails the attachment of lactate to lysine residues within proteins, profoundly modulating diverse cellular mechanisms underlying regulated cell death (RCD). This modification encompasses two primary categories: histone lactylation and non-histone lactylation. Histone lactylation assumes a pivotal regulatory function in the RCD process, primarily by modulating the transcriptional landscape of genes implicated in cell death. In contrast, non-histone lactylation exerts its influence by targeting transferases, transcription, cell cycle progression, death pathways, and metabolic processes that are intricately involved in RCD. This review provides a comprehensive overview of recent breakthroughs in understanding how lactylation regulates RCD, while also offering insights into potential avenues for future research, thereby deepening our comprehension of cellular fate determination.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 4","pages":"Article 119927"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactylation, a newly identified post-translational modification, entails the attachment of lactate to lysine residues within proteins, profoundly modulating diverse cellular mechanisms underlying regulated cell death (RCD). This modification encompasses two primary categories: histone lactylation and non-histone lactylation. Histone lactylation assumes a pivotal regulatory function in the RCD process, primarily by modulating the transcriptional landscape of genes implicated in cell death. In contrast, non-histone lactylation exerts its influence by targeting transferases, transcription, cell cycle progression, death pathways, and metabolic processes that are intricately involved in RCD. This review provides a comprehensive overview of recent breakthroughs in understanding how lactylation regulates RCD, while also offering insights into potential avenues for future research, thereby deepening our comprehension of cellular fate determination.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.