Dextrosinistral reading of SMILES notation: Investigation into origin of non-sense code from string manipulations

IF 3 Q2 ENGINEERING, CHEMICAL
Anup Paul
{"title":"Dextrosinistral reading of SMILES notation: Investigation into origin of non-sense code from string manipulations","authors":"Anup Paul","doi":"10.1016/j.dche.2025.100222","DOIUrl":null,"url":null,"abstract":"<div><div>The SMILES notation provides a digital way to represent any chemical structure in the form of a string of ASCII characters, therefore, a preferred data medium for machine learning models. As Chomsky type-2 language, SMILES notation is supported with context-free grammar, raising errors for invalid string arrangements. Numerous efforts have been made to recover chemical structures in invalid SMILES strings. Exploring the flexibility of SMILES notations of real molecules would give critical information related to SMILES string reorganizations and sources of errors. Present study examined the potential for reading SMILES notation from right-to-left, known as dextrosinistral reading, and evaluated the effect of new character combinations on the representative chemical structures. The study developed a set of string operations to reverse the order of characters in the SMILES string while maintaining the context-free grammar of SMILES notation. These operations were tested on SMILES notation of over two hundred natural products, resulting in diverse changes at the chemical structure level, including reverting to the original structure, reconfiguring into an isomeric structure, or generating compounds having valency errors. The DFS-tree profiled the changes in chemical structures from reorganizations of SMILES strings and identified the source of atoms with valence errors. Molecular Mechanics (mm2) calculations showed that a group of newly generated chemical structures has total energy in a range of transition state molecular complexes. While the analyses of machine learning models showed the need for cheminformatics tools, such as RDKit and OpenBabel libraries, to develop modules that can fingerprint the reorganized SMILES strings containing atoms of explicit valences. The outcome of the present study highlighted the diversity and flexibility of SMILES notation, and may provide a new source of data required for developing the cheminformatics functionalities necessary to advance machine learning-based chemical discovery.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100222"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The SMILES notation provides a digital way to represent any chemical structure in the form of a string of ASCII characters, therefore, a preferred data medium for machine learning models. As Chomsky type-2 language, SMILES notation is supported with context-free grammar, raising errors for invalid string arrangements. Numerous efforts have been made to recover chemical structures in invalid SMILES strings. Exploring the flexibility of SMILES notations of real molecules would give critical information related to SMILES string reorganizations and sources of errors. Present study examined the potential for reading SMILES notation from right-to-left, known as dextrosinistral reading, and evaluated the effect of new character combinations on the representative chemical structures. The study developed a set of string operations to reverse the order of characters in the SMILES string while maintaining the context-free grammar of SMILES notation. These operations were tested on SMILES notation of over two hundred natural products, resulting in diverse changes at the chemical structure level, including reverting to the original structure, reconfiguring into an isomeric structure, or generating compounds having valency errors. The DFS-tree profiled the changes in chemical structures from reorganizations of SMILES strings and identified the source of atoms with valence errors. Molecular Mechanics (mm2) calculations showed that a group of newly generated chemical structures has total energy in a range of transition state molecular complexes. While the analyses of machine learning models showed the need for cheminformatics tools, such as RDKit and OpenBabel libraries, to develop modules that can fingerprint the reorganized SMILES strings containing atoms of explicit valences. The outcome of the present study highlighted the diversity and flexibility of SMILES notation, and may provide a new source of data required for developing the cheminformatics functionalities necessary to advance machine learning-based chemical discovery.
对 SMILES 符号的 Dextrosinistral 阅读:调查字符串操作产生的无意义代码的起源
SMILES符号提供了一种以ASCII字符字符串形式表示任何化学结构的数字方式,因此是机器学习模型的首选数据介质。作为Chomsky type-2语言,SMILES表示法支持与上下文无关的语法,这会引发无效字符串排列的错误。为了恢复无效smile字符串中的化学结构,人们做了大量的努力。探索真实分子的SMILES符号的灵活性将提供与SMILES字符串重组和错误来源相关的关键信息。本研究考察了从右到左阅读smile符号的可能性,即右旋阅读,并评估了新字符组合对代表性化学结构的影响。该研究开发了一组字符串操作来反转SMILES字符串中的字符顺序,同时保持SMILES符号的上下文无关语法。这些操作在超过200种天然产物的SMILES符号上进行了测试,在化学结构水平上产生了不同的变化,包括恢复到原始结构,重新配置为同分异构体结构,或产生具有价错误的化合物。dfs树分析了smile链重组后化学结构的变化,并确定了价错原子的来源。分子力学(mm2)计算表明,一组新生成的化学结构的总能量处于过渡态分子复合物的范围内。而对机器学习模型的分析表明,需要化学信息学工具,如RDKit和OpenBabel库,来开发可以识别包含显价原子的重组SMILES字符串的模块。本研究的结果突出了SMILES符号的多样性和灵活性,并可能为开发基于机器学习的化学发现所需的化学信息学功能提供新的数据来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信