Multi-scale 4D localized spatio-temporal graph convolutional networks for spatio-temporal sequences forecasting in aluminum electrolysis

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yubo Sun , Xiaofang Chen , Weihua Gui , Lihui Cen , Yongfang Xie , Zhong Zou
{"title":"Multi-scale 4D localized spatio-temporal graph convolutional networks for spatio-temporal sequences forecasting in aluminum electrolysis","authors":"Yubo Sun ,&nbsp;Xiaofang Chen ,&nbsp;Weihua Gui ,&nbsp;Lihui Cen ,&nbsp;Yongfang Xie ,&nbsp;Zhong Zou","doi":"10.1016/j.aei.2025.103222","DOIUrl":null,"url":null,"abstract":"<div><div>Spatio-temporal sequences forecasting fulfills a vital role in the intelligent advancement of aluminum electrolysis production process. The localized spatio-temporal correlations contained in spatio-temporal sequences, caused by the dynamicity of regional working conditions, have complex and diverse (multi-scale) characteristics. The existing deep learning-based prediction methods are difficult to capture the multi-scale localized spatio-temporal correlations, and the adverse effects of industrial noise on spatio-temporal correlation acquisition have not been considered. In this article, we propose the multi-scale 4D localized spatio-temporal graph convolutional networks (Ms-4D-LStGCN) to address the above issues. Concretely, we propose a data-driven accurate similarity search method and fuse the prior knowledge to construct the spatio-temporal graph. Then,a novel 4D localized spatio-temporal graph convolution module is proposed to capture the complex localized spatio-temporal correlations. Finally, the multi-scale 4D localized spatio-temporal graph convolution framework is designed to obtain the multi-scale and multi-depth localized spatio-temporal correlation features. Illustrative examples on 16 real-world industrial aluminum electrolysis datasets attest that our method has superior prediction performance compared with state-of-the-art methods.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103222"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001156","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spatio-temporal sequences forecasting fulfills a vital role in the intelligent advancement of aluminum electrolysis production process. The localized spatio-temporal correlations contained in spatio-temporal sequences, caused by the dynamicity of regional working conditions, have complex and diverse (multi-scale) characteristics. The existing deep learning-based prediction methods are difficult to capture the multi-scale localized spatio-temporal correlations, and the adverse effects of industrial noise on spatio-temporal correlation acquisition have not been considered. In this article, we propose the multi-scale 4D localized spatio-temporal graph convolutional networks (Ms-4D-LStGCN) to address the above issues. Concretely, we propose a data-driven accurate similarity search method and fuse the prior knowledge to construct the spatio-temporal graph. Then,a novel 4D localized spatio-temporal graph convolution module is proposed to capture the complex localized spatio-temporal correlations. Finally, the multi-scale 4D localized spatio-temporal graph convolution framework is designed to obtain the multi-scale and multi-depth localized spatio-temporal correlation features. Illustrative examples on 16 real-world industrial aluminum electrolysis datasets attest that our method has superior prediction performance compared with state-of-the-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信