Karim Yatim MD , Guilherme T. Ribas PhD , Daniel C. Elton PhD , Marcio A.B.C. Rockenbach MD , Ayman Al Jurdi MD , Perry J. Pickhardt MD , John W. Garrett PhD , Keith J. Dreyer DO, PhD , Bernardo C. Bizzo MD, PhD , Leonardo V. Riella MD, PhD
{"title":"Applying Artificial Intelligence to Quantify Body Composition on Abdominal CTs and Better Predict Kidney Transplantation Wait-List Mortality","authors":"Karim Yatim MD , Guilherme T. Ribas PhD , Daniel C. Elton PhD , Marcio A.B.C. Rockenbach MD , Ayman Al Jurdi MD , Perry J. Pickhardt MD , John W. Garrett PhD , Keith J. Dreyer DO, PhD , Bernardo C. Bizzo MD, PhD , Leonardo V. Riella MD, PhD","doi":"10.1016/j.jacr.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Prekidney transplant evaluation routinely includes abdominal CT for presurgical vascular assessment. A wealth of body composition data are available from these CT examinations, but they remain an underused source of data, often missing from prognostication models, as these measurements require organ segmentation not routinely performed clinically by radiologists. We hypothesize that artificial intelligence facilitates accurate extraction of abdominal CT body composition data, allowing better prediction of outcomes.</div></div><div><h3>Methods</h3><div>We conducted a retrospective, single-center observational study of kidney transplant candidates wait-listed between January 1, 2007, and December 31, 2017, with available CT data. Validated deep learning models quantified body composition including fat, aortic calcification, bone density, and muscle mass. Logistic regression was used to compare body composition data to Expected Post-Transplant Survival Score (EPTS) as a predictor of 5-year wait-list mortality.</div></div><div><h3>Results</h3><div>In all, 899 patients were followed for a median 943 days (interquartile range 320-1,697). Of 899, 589 (65.5%) were men and 680 of 899 (75.6%) were White, non-Hispanic. Of 899, 167 patients (18.6%) died while on the waiting list. Myosteatosis (defined as the lowest tertile of muscle attenuation) and increased total aortic and abdominal calcification were associated with increased 5-year wait-list mortality. Logistic regression showed that imaging parameters performed similarly to EPTS at predicting 5-year wait-list mortality (area under receiver operating characteristic curve 0.70 [0.64-0.75] versus 0.67 [0.62-0.72], respectively), and combining body composition parameters with EPTS led to a slight improved survival prediction (area under receiver operating characteristic curve = 0.72, 95% confidence interval 0.66-0.76).</div></div><div><h3>Conclusions</h3><div>Fully automated quantification of body composition in kidney transplant candidates is feasible. Myosteatosis and atherosclerosis are associated with 5-year wait-list mortality.</div></div>","PeriodicalId":49044,"journal":{"name":"Journal of the American College of Radiology","volume":"22 3","pages":"Pages 332-341"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1546144025000043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Prekidney transplant evaluation routinely includes abdominal CT for presurgical vascular assessment. A wealth of body composition data are available from these CT examinations, but they remain an underused source of data, often missing from prognostication models, as these measurements require organ segmentation not routinely performed clinically by radiologists. We hypothesize that artificial intelligence facilitates accurate extraction of abdominal CT body composition data, allowing better prediction of outcomes.
Methods
We conducted a retrospective, single-center observational study of kidney transplant candidates wait-listed between January 1, 2007, and December 31, 2017, with available CT data. Validated deep learning models quantified body composition including fat, aortic calcification, bone density, and muscle mass. Logistic regression was used to compare body composition data to Expected Post-Transplant Survival Score (EPTS) as a predictor of 5-year wait-list mortality.
Results
In all, 899 patients were followed for a median 943 days (interquartile range 320-1,697). Of 899, 589 (65.5%) were men and 680 of 899 (75.6%) were White, non-Hispanic. Of 899, 167 patients (18.6%) died while on the waiting list. Myosteatosis (defined as the lowest tertile of muscle attenuation) and increased total aortic and abdominal calcification were associated with increased 5-year wait-list mortality. Logistic regression showed that imaging parameters performed similarly to EPTS at predicting 5-year wait-list mortality (area under receiver operating characteristic curve 0.70 [0.64-0.75] versus 0.67 [0.62-0.72], respectively), and combining body composition parameters with EPTS led to a slight improved survival prediction (area under receiver operating characteristic curve = 0.72, 95% confidence interval 0.66-0.76).
Conclusions
Fully automated quantification of body composition in kidney transplant candidates is feasible. Myosteatosis and atherosclerosis are associated with 5-year wait-list mortality.
期刊介绍:
The official journal of the American College of Radiology, JACR informs its readers of timely, pertinent, and important topics affecting the practice of diagnostic radiologists, interventional radiologists, medical physicists, and radiation oncologists. In so doing, JACR improves their practices and helps optimize their role in the health care system. By providing a forum for informative, well-written articles on health policy, clinical practice, practice management, data science, and education, JACR engages readers in a dialogue that ultimately benefits patient care.