Investigation on the aggregation behavior and mechanical properties of silica-filled natural rubber composites: A coarse-grained molecular dynamics study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongyu Guo, Fanlin Zeng, Jianzheng Cui, Qing Li
{"title":"Investigation on the aggregation behavior and mechanical properties of silica-filled natural rubber composites: A coarse-grained molecular dynamics study","authors":"Hongyu Guo,&nbsp;Fanlin Zeng,&nbsp;Jianzheng Cui,&nbsp;Qing Li","doi":"10.1016/j.commatsci.2025.113815","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the particle aggregation behavior in filled rubber is crucial for developing high-performance composite materials. Herein, the effect of the spatial distribution of silica nanoparticles, the length of matrix molecular chains, and the crosslinking of the matrix on the mechanical properties of natural rubber (NR) composites were systematically investigated using coarse-grained molecular dynamics (CGMD) simulations. The results show that with the increase in the degree of silica nanoparticle aggregation, the stress level of the filled rubber in the small deformation stage is significantly increased, but in the large deformation stage, it is significantly reduced. The former can be attributed to the supporting effect of the high strength and rigidity of the particle network in the small deformation stage, while the latter can be attributed to the gradual failure of the particle network in the large deformation stage and the weakening of the adsorption of the particles on the rubber molecular chain. Moreover, it was found that longer molecular chains reduced particle aggregation by enhancing particle encapsulation and interface interactions, while crosslinked networks promoted aggregation behavior by restricting particle mobility through a cage structure. To explain in depth the inherent enhancement mechanism of nanoparticle-filled rubber, microstructure property analysis, such as mean square displacement, interaction energy, and bond orientation, has been implemented and discussed.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"252 ","pages":"Article 113815"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001582","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the particle aggregation behavior in filled rubber is crucial for developing high-performance composite materials. Herein, the effect of the spatial distribution of silica nanoparticles, the length of matrix molecular chains, and the crosslinking of the matrix on the mechanical properties of natural rubber (NR) composites were systematically investigated using coarse-grained molecular dynamics (CGMD) simulations. The results show that with the increase in the degree of silica nanoparticle aggregation, the stress level of the filled rubber in the small deformation stage is significantly increased, but in the large deformation stage, it is significantly reduced. The former can be attributed to the supporting effect of the high strength and rigidity of the particle network in the small deformation stage, while the latter can be attributed to the gradual failure of the particle network in the large deformation stage and the weakening of the adsorption of the particles on the rubber molecular chain. Moreover, it was found that longer molecular chains reduced particle aggregation by enhancing particle encapsulation and interface interactions, while crosslinked networks promoted aggregation behavior by restricting particle mobility through a cage structure. To explain in depth the inherent enhancement mechanism of nanoparticle-filled rubber, microstructure property analysis, such as mean square displacement, interaction energy, and bond orientation, has been implemented and discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信