Deep learning based image enhancement for dynamic non-Cartesian MRI: Application to “silent“ fMRI

IF 7 2区 医学 Q1 BIOLOGY
Frank Riemer , Marius Eldevik Rusaas , Lydia Brunvoll Sandøy , Florian Wiesinger , Ana Beatriz Solana , Lars Ersland , Renate Grüner
{"title":"Deep learning based image enhancement for dynamic non-Cartesian MRI: Application to “silent“ fMRI","authors":"Frank Riemer ,&nbsp;Marius Eldevik Rusaas ,&nbsp;Lydia Brunvoll Sandøy ,&nbsp;Florian Wiesinger ,&nbsp;Ana Beatriz Solana ,&nbsp;Lars Ersland ,&nbsp;Renate Grüner","doi":"10.1016/j.compbiomed.2025.109920","DOIUrl":null,"url":null,"abstract":"<div><div>Radial based non-Cartesian sequences may be used for silent functional MRI examinations particularly in settings where scanner noise could pose issues. However, to achieve reasonable temporal resolution, under-sampled 3D radial k-space commonly results in reduced image quality. In recent years, deep learning models for improving image quality have emerged. In this study, we investigate the applicability of deep learning image enhancement methods with a focus on preserving dynamic temporal signal changes.</div><div>By utilizing high-resolution resting-state fMRI datasets from the Human Connectome Project (HCP) foundation, a ground-truth training set was constructed. The k-space trajectory coordinates of a so-called silent ‘Looping Star’ fMRI sequence was used to simulate non-Cartesian MRI data from the HCP datasets. Subsequently, these sparse resampled k-space were reconstructed, thereby generating pairs of simulated ‘Looping Star’ images and ground truth HCP images. The dataset served as the basis for training both 2D-UNet and 3D-UNet deep learning models for image enhancement. A comparative analysis was conducted, and the superior model was further fine-tuned. Evaluation of the final model's performance included standard image quality metrics as well as resting-state fMRI (rs-fMRI) analysis in the time-domain.</div><div>The 3D-UNet outperformed the 2D-UNet in the image enhancement task, resulting in a significant reduction in error between the network input and the ground truth. Specifically, the 3D-UNet achieved a 97 % reduction in the mean square error between the simulated Looping Star input and the HCP ground truth in the pre-processed dataset. Moreover, the 3D-UNet successfully preserved voxel variations, observed as the correlated activity in the posterior cingulate cortex (PCC) during rs-fMRI analysis while simultaneously mitigating noise in the time-series images.</div><div>In summary, image quality was improved and artifacts were effectively eliminated through the application of both 2D and 3D deep learning approaches. Comparative analysis of the networks indicated that the use of 3D convolutions is more advantageous than employing a deeper network with 2D convolutions, particularly in scenarios involving global artifacts. Furthermore by demonstrating that the trained neural network successfully preserved temporal characteristics in the BOLD signals, the results suggest applicability in fMRI studies.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109920"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002719","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radial based non-Cartesian sequences may be used for silent functional MRI examinations particularly in settings where scanner noise could pose issues. However, to achieve reasonable temporal resolution, under-sampled 3D radial k-space commonly results in reduced image quality. In recent years, deep learning models for improving image quality have emerged. In this study, we investigate the applicability of deep learning image enhancement methods with a focus on preserving dynamic temporal signal changes.
By utilizing high-resolution resting-state fMRI datasets from the Human Connectome Project (HCP) foundation, a ground-truth training set was constructed. The k-space trajectory coordinates of a so-called silent ‘Looping Star’ fMRI sequence was used to simulate non-Cartesian MRI data from the HCP datasets. Subsequently, these sparse resampled k-space were reconstructed, thereby generating pairs of simulated ‘Looping Star’ images and ground truth HCP images. The dataset served as the basis for training both 2D-UNet and 3D-UNet deep learning models for image enhancement. A comparative analysis was conducted, and the superior model was further fine-tuned. Evaluation of the final model's performance included standard image quality metrics as well as resting-state fMRI (rs-fMRI) analysis in the time-domain.
The 3D-UNet outperformed the 2D-UNet in the image enhancement task, resulting in a significant reduction in error between the network input and the ground truth. Specifically, the 3D-UNet achieved a 97 % reduction in the mean square error between the simulated Looping Star input and the HCP ground truth in the pre-processed dataset. Moreover, the 3D-UNet successfully preserved voxel variations, observed as the correlated activity in the posterior cingulate cortex (PCC) during rs-fMRI analysis while simultaneously mitigating noise in the time-series images.
In summary, image quality was improved and artifacts were effectively eliminated through the application of both 2D and 3D deep learning approaches. Comparative analysis of the networks indicated that the use of 3D convolutions is more advantageous than employing a deeper network with 2D convolutions, particularly in scenarios involving global artifacts. Furthermore by demonstrating that the trained neural network successfully preserved temporal characteristics in the BOLD signals, the results suggest applicability in fMRI studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信