Succinate predisposes mice to atrial fibrillation by impairing mitochondrial function via SUCNR1/AMPK axis

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yudi Zhang , Haoyu Gong , Lingyan Jin , Peng Liu , Jiali Fan , Xinghua Qin , Qiangsun Zheng
{"title":"Succinate predisposes mice to atrial fibrillation by impairing mitochondrial function via SUCNR1/AMPK axis","authors":"Yudi Zhang ,&nbsp;Haoyu Gong ,&nbsp;Lingyan Jin ,&nbsp;Peng Liu ,&nbsp;Jiali Fan ,&nbsp;Xinghua Qin ,&nbsp;Qiangsun Zheng","doi":"10.1016/j.redox.2025.103576","DOIUrl":null,"url":null,"abstract":"<div><div>Atrial fibrillation (AF), a major public health concern, is associated with high rates of death and disability. Mitochondrial dysfunction has emerged as a key contributor to the pathophysiology of AF. Succinate, an essential Krebs cycle metabolite, is often elevated in the circulation of patients at risk for AF. However, its exact role in AF pathogenesis is still not well understood. To explore the association linking succinate overload and AF, we first established AF-susceptible mouse models of obesity and diabetes, confirming that circulating succinate levels were significantly elevated in these AF-prone mice. Next, we assessed AF vulnerability and atrial remodeling in succinate-treated mice (2 %/5 % for 7 weeks) or isolated primary atrial cells (0.5 mM for 24 h). Our results demonstrated that succinate overload increased AF susceptibility in mice and triggered adverse atrial remodeling, characterized by left atrial dilation, connexins lateralization, ion channel disturbances, and fibrosis. Moreover, succinate compromised atrial mitochondrial structure, leading to increased oxidative stress. Mechanistically, succinate overload upregulated the expression of its cognate receptor SUCNR1 (succinate receptor 1) and decreased AMPK (AMP-activated protein kinase) phosphorylation both <em>in vitro</em> and <em>in vivo</em>. AICAR (AMPK activator) maintained mitochondrial health to mitigate remodeling in succinate-exposed cells and prevented succinate-induced AF in obese and diabetic mice. In conclusion, succinate overload enhances AF vulnerability and atrial remodeling by impairing AMPK signaling and mitochondrial function. Succinate, therefore, represents an underappreciated contributor to AF pathogenesis and a potential biomarker.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103576"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000898","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atrial fibrillation (AF), a major public health concern, is associated with high rates of death and disability. Mitochondrial dysfunction has emerged as a key contributor to the pathophysiology of AF. Succinate, an essential Krebs cycle metabolite, is often elevated in the circulation of patients at risk for AF. However, its exact role in AF pathogenesis is still not well understood. To explore the association linking succinate overload and AF, we first established AF-susceptible mouse models of obesity and diabetes, confirming that circulating succinate levels were significantly elevated in these AF-prone mice. Next, we assessed AF vulnerability and atrial remodeling in succinate-treated mice (2 %/5 % for 7 weeks) or isolated primary atrial cells (0.5 mM for 24 h). Our results demonstrated that succinate overload increased AF susceptibility in mice and triggered adverse atrial remodeling, characterized by left atrial dilation, connexins lateralization, ion channel disturbances, and fibrosis. Moreover, succinate compromised atrial mitochondrial structure, leading to increased oxidative stress. Mechanistically, succinate overload upregulated the expression of its cognate receptor SUCNR1 (succinate receptor 1) and decreased AMPK (AMP-activated protein kinase) phosphorylation both in vitro and in vivo. AICAR (AMPK activator) maintained mitochondrial health to mitigate remodeling in succinate-exposed cells and prevented succinate-induced AF in obese and diabetic mice. In conclusion, succinate overload enhances AF vulnerability and atrial remodeling by impairing AMPK signaling and mitochondrial function. Succinate, therefore, represents an underappreciated contributor to AF pathogenesis and a potential biomarker.

Abstract Image

琥珀酸通过 SUCNR1/AMPK 轴损害线粒体功能,使小鼠易患心房颤动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信