{"title":"Exploring the application of deep learning methods for polygenic risk score estimation.","authors":"Steven Squires, Michael N Weedon, Richard A Oram","doi":"10.1088/2057-1976/adbb71","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>. Polygenic risk scores (PRS) summarise genetic information into a single number with clinical and research uses. Deep learning (DL) has revolutionised multiple fields, however, the impact of DL on PRSs has been less significant. We explore how DL can improve the generation of PRSs.<i>Methods</i>. We train DL models on known PRSs using UK Biobank data. We explore whether the models can recreate human programmed PRSs, including using a single model to generate multiple PRSs, and DL difficulties in PRS generation. We investigate how DL can compensate for missing data and constraints on performance.<i>Results</i>. We demonstrate almost perfect generation of multiple PRSs with little loss of performance with reduced quantity of training data. For an example set of missing SNPs the DL model produces predictions that enable separation of cases from population samples with an area under the receiver operating characteristic curve of 0.847 (95% CI: 0.828-0.864) compared to 0.798 (95% CI: 0.779-0.818) for the PRS.<i>Conclusions</i>. DL can accurately generate PRSs, including with one model for multiple PRSs. The models are transferable and have high longevity. With certain missing SNPs the DL models can improve on PRS generation; further improvements would likely require additional input data.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adbb71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background. Polygenic risk scores (PRS) summarise genetic information into a single number with clinical and research uses. Deep learning (DL) has revolutionised multiple fields, however, the impact of DL on PRSs has been less significant. We explore how DL can improve the generation of PRSs.Methods. We train DL models on known PRSs using UK Biobank data. We explore whether the models can recreate human programmed PRSs, including using a single model to generate multiple PRSs, and DL difficulties in PRS generation. We investigate how DL can compensate for missing data and constraints on performance.Results. We demonstrate almost perfect generation of multiple PRSs with little loss of performance with reduced quantity of training data. For an example set of missing SNPs the DL model produces predictions that enable separation of cases from population samples with an area under the receiver operating characteristic curve of 0.847 (95% CI: 0.828-0.864) compared to 0.798 (95% CI: 0.779-0.818) for the PRS.Conclusions. DL can accurately generate PRSs, including with one model for multiple PRSs. The models are transferable and have high longevity. With certain missing SNPs the DL models can improve on PRS generation; further improvements would likely require additional input data.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.