Decoding Hairpin Structure Stability in Lin28-Mediated Repression.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiang Zhu, Limu Hu, Chang Cui, Min Zang, Hao Dong, Jing Ma
{"title":"Decoding Hairpin Structure Stability in Lin28-Mediated Repression.","authors":"Qiang Zhu, Limu Hu, Chang Cui, Min Zang, Hao Dong, Jing Ma","doi":"10.1021/acs.biochem.4c00675","DOIUrl":null,"url":null,"abstract":"<p><p>The Lin28 protein is well known for its role in inhibiting the biogenesis of microRNAs (miRNAs) that belong to the let-7 family. The Lin28 and let-7 axes are associated with several types of cancers. It is imperative to understand the underlying mechanism to treat these cancers in a more efficient way. In this study, we employed all-atom molecular dynamics simulation as a research tool to investigate the interaction formed between Lin28 and the precursor element of let-7d, one of the 12 members of the let-7 family. By constructing systems of an intact sequence length of preE-let-7d, our simulations suggest that both the loop region of the hairpin structure and the GGAG sequence can form stable interactions with the cold shock domain (CSD) and zinc knuckle domain (ZKD) regions of the protein, respectively. The system, by deleting the nucleotides GGAG at the 3' terminal, indicates that the loop region is more responsible for its ability in bypassing the binding and repression of Lin28. Additionally, using let-7c-2, which can bypass Lin28 regulation, as a template, we constructed systems with mutated loop region sequences in miRNAs and tested their stabilities. Our simulation results coincide well with experimental observations. Based on both simulation results and statistical analysis from two databases, we hypothesized that two factors, namely, the interaction between terminal nucleotides and the ring tension originating from the middle nucleotides, can significantly influence their stabilities. Systems combining strong and weak terminal interactions with large and small ring tensions were recruited to validate our hypothesis. Our findings offer a new perspective and shed light on strategies for designing sequences to regulate the interactions formed between proteins and hairpin structures.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Lin28 protein is well known for its role in inhibiting the biogenesis of microRNAs (miRNAs) that belong to the let-7 family. The Lin28 and let-7 axes are associated with several types of cancers. It is imperative to understand the underlying mechanism to treat these cancers in a more efficient way. In this study, we employed all-atom molecular dynamics simulation as a research tool to investigate the interaction formed between Lin28 and the precursor element of let-7d, one of the 12 members of the let-7 family. By constructing systems of an intact sequence length of preE-let-7d, our simulations suggest that both the loop region of the hairpin structure and the GGAG sequence can form stable interactions with the cold shock domain (CSD) and zinc knuckle domain (ZKD) regions of the protein, respectively. The system, by deleting the nucleotides GGAG at the 3' terminal, indicates that the loop region is more responsible for its ability in bypassing the binding and repression of Lin28. Additionally, using let-7c-2, which can bypass Lin28 regulation, as a template, we constructed systems with mutated loop region sequences in miRNAs and tested their stabilities. Our simulation results coincide well with experimental observations. Based on both simulation results and statistical analysis from two databases, we hypothesized that two factors, namely, the interaction between terminal nucleotides and the ring tension originating from the middle nucleotides, can significantly influence their stabilities. Systems combining strong and weak terminal interactions with large and small ring tensions were recruited to validate our hypothesis. Our findings offer a new perspective and shed light on strategies for designing sequences to regulate the interactions formed between proteins and hairpin structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信