ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Vaishali Gulati, Shivanshu Siyanwal,  Arvind, Kavita Dorai
{"title":"ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor","authors":"Vaishali Gulati,&nbsp;Shivanshu Siyanwal,&nbsp; Arvind,&nbsp;Kavita Dorai","doi":"10.1007/s11128-025-04696-8","DOIUrl":null,"url":null,"abstract":"<div><p>We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04696-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信