Gait recognition via View-aware Part-wise Attention and Multi-scale Dilated Temporal Extractor

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xu Song , Yang Wang , Yan Huang , Caifeng Shan
{"title":"Gait recognition via View-aware Part-wise Attention and Multi-scale Dilated Temporal Extractor","authors":"Xu Song ,&nbsp;Yang Wang ,&nbsp;Yan Huang ,&nbsp;Caifeng Shan","doi":"10.1016/j.imavis.2025.105464","DOIUrl":null,"url":null,"abstract":"<div><div>Gait recognition based on silhouette sequences has made significant strides in recent years through the extraction of body shape and motion features. However, challenges remain in achieving accurate gait recognition under covariate changes, such as variations in view and clothing. To tackle these issues, this paper introduces a novel methodology incorporating a View-aware Part-wise Attention (VPA) mechanism and a Multi-scale Dilated Temporal Extractor (MDTE) to enhance gait recognition. Distinct from existing techniques, VPA mechanism acknowledges the differential sensitivity of various body parts to view changes, applying targeted attention weights at the feature level to improve the efficacy of view-aware constraints in areas of higher saliency or distinctiveness. Concurrently, MDTE employs dilated convolutions across multiple scales to capture the temporal dynamics of gait at diverse levels, thereby refining the motion representation. Comprehensive experiments on the CASIA-B, OU-MVLP, and Gait3D datasets validate the superior performance of our approach. Remarkably, our method achieves a 91.0% accuracy rate under clothing-change conditions on the CASIA-B dataset using solely silhouette information, surpassing the current state-of-the-art (SOTA) techniques. These results underscore the effectiveness and adaptability of our proposed strategy in overcoming the complexities of gait recognition amidst covariate changes.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105464"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000526","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gait recognition based on silhouette sequences has made significant strides in recent years through the extraction of body shape and motion features. However, challenges remain in achieving accurate gait recognition under covariate changes, such as variations in view and clothing. To tackle these issues, this paper introduces a novel methodology incorporating a View-aware Part-wise Attention (VPA) mechanism and a Multi-scale Dilated Temporal Extractor (MDTE) to enhance gait recognition. Distinct from existing techniques, VPA mechanism acknowledges the differential sensitivity of various body parts to view changes, applying targeted attention weights at the feature level to improve the efficacy of view-aware constraints in areas of higher saliency or distinctiveness. Concurrently, MDTE employs dilated convolutions across multiple scales to capture the temporal dynamics of gait at diverse levels, thereby refining the motion representation. Comprehensive experiments on the CASIA-B, OU-MVLP, and Gait3D datasets validate the superior performance of our approach. Remarkably, our method achieves a 91.0% accuracy rate under clothing-change conditions on the CASIA-B dataset using solely silhouette information, surpassing the current state-of-the-art (SOTA) techniques. These results underscore the effectiveness and adaptability of our proposed strategy in overcoming the complexities of gait recognition amidst covariate changes.

Abstract Image

通过视图感知部分注意力和多尺度稀释时态提取器识别步态
近年来,基于轮廓序列的步态识别通过提取人体形状和运动特征取得了重大进展。然而,在协变量变化(如视角和服装的变化)下实现准确的步态识别仍然存在挑战。为了解决这些问题,本文引入了一种新的方法,该方法结合了视觉感知部分明智注意(VPA)机制和多尺度扩展时间提取器(MDTE)来增强步态识别。与现有技术不同,VPA机制承认不同身体部位对视图变化的不同敏感性,在特征层面应用有针对性的注意权重,以提高视图感知约束在更高显著性或显著性区域的有效性。同时,MDTE采用多尺度的扩张卷积来捕捉不同水平的步态时间动态,从而改进运动表征。在CASIA-B、OU-MVLP和Gait3D数据集上的综合实验验证了该方法的优越性能。值得注意的是,我们的方法在CASIA-B数据集上,仅使用轮廓信息,在服装更换条件下达到了91.0%的准确率,超过了目前最先进的SOTA技术。这些结果强调了我们提出的策略在克服协变量变化中步态识别的复杂性方面的有效性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信