Yue Deng , Shuting Zhang , Fang Yuan , Yuxia Li , Guangyi Wang
{"title":"Reservoir computing system using discrete memristor for chaotic temporal signal processing","authors":"Yue Deng , Shuting Zhang , Fang Yuan , Yuxia Li , Guangyi Wang","doi":"10.1016/j.chaos.2025.116230","DOIUrl":null,"url":null,"abstract":"<div><div>Reservoir computing (RC) is a highly efficient neural network for processing temporal signals, primarily due to its significantly lower training cost compared to standard recurrent neural networks. In this work, a novel discrete memristor (DM) model is investigated and a simple two-dimensional chaotic map based on the DM model is presented, in which complex dynamics are simulated. By utilizing this DM-based map as a reservoir, a dynamic DM-based RC system is constructed, and the performance is verified through nonlinear regression and time-series prediction tasks. Our system achieves a high accuracy rate of 99.99 % in the nonlinear recognitions, as well as a low root mean square error of 0.0974 in the time-series prediction of the Logistic map. This work may pave the way for the future development of high-efficiency memristor-based RC systems to handle more complex temporal tasks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116230"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002437","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir computing (RC) is a highly efficient neural network for processing temporal signals, primarily due to its significantly lower training cost compared to standard recurrent neural networks. In this work, a novel discrete memristor (DM) model is investigated and a simple two-dimensional chaotic map based on the DM model is presented, in which complex dynamics are simulated. By utilizing this DM-based map as a reservoir, a dynamic DM-based RC system is constructed, and the performance is verified through nonlinear regression and time-series prediction tasks. Our system achieves a high accuracy rate of 99.99 % in the nonlinear recognitions, as well as a low root mean square error of 0.0974 in the time-series prediction of the Logistic map. This work may pave the way for the future development of high-efficiency memristor-based RC systems to handle more complex temporal tasks.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.