Illuminating green fluorescent protein: Characterizing tri-peptide fluorescent chromophore, probing reactivity of cysteines, and unveiling site-directed modifications through mass spectrometry

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL
Jianmin Zhang, Bing Wang
{"title":"Illuminating green fluorescent protein: Characterizing tri-peptide fluorescent chromophore, probing reactivity of cysteines, and unveiling site-directed modifications through mass spectrometry","authors":"Jianmin Zhang,&nbsp;Bing Wang","doi":"10.1016/j.jpba.2025.116771","DOIUrl":null,"url":null,"abstract":"<div><div>Bioconjugation technologies enable covalent attachment of diagnostic or therapeutic effectuators onto biological targets, allowing for the precise delivery of desired drugs to the intended targets with enhanced potency, selectivity, specificity, and prolonged duration of action. As the number of bioconjugation techniques has grown enormously, identification and in-depth characterization of in-process products play a critical role in the development of covalent drug conjugates. This is especially significant in light of the increased complexity of novel biotherapeutics derived from biological matrices. This paper describes liquid chromatography-mass spectrometry (LC-MS/MS)-based studies that have contributed to the development of site-specific genetic incorporation of non-natural amino acids (nnAAs) into proteins. A holistic approach was implemented to characterize a wild type green fluorescent protein (wtGFP) and an enhanced green fluorescent protein (eGFP). By using the wtGFP as a pilot and model system, the reactivity of cysteine residues was investigated under different sample processing conditions, followed by a stability evaluation using intact mass measurement. The subsequent complementary proteolytic peptide mappings were performed to achieve full sequence coverage of the proteins, identification of predominant modifications, and granular details of the fluorescent chromophore. The developed method was successfully applied to isolate the eGFP incorporated with nnAA from cells. This enables the verification of the specific site of nnAA incorporation, and the characterization of complex variants using <em>de novo</em> sequencing techniques. MS studies demonstrated that <em>p</em>-azido-phenylalanine <em>(p</em>AzF) was specifically incorporated into the desired site of eGFP with high efficiency and fidelity.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"259 ","pages":"Article 116771"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525001128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioconjugation technologies enable covalent attachment of diagnostic or therapeutic effectuators onto biological targets, allowing for the precise delivery of desired drugs to the intended targets with enhanced potency, selectivity, specificity, and prolonged duration of action. As the number of bioconjugation techniques has grown enormously, identification and in-depth characterization of in-process products play a critical role in the development of covalent drug conjugates. This is especially significant in light of the increased complexity of novel biotherapeutics derived from biological matrices. This paper describes liquid chromatography-mass spectrometry (LC-MS/MS)-based studies that have contributed to the development of site-specific genetic incorporation of non-natural amino acids (nnAAs) into proteins. A holistic approach was implemented to characterize a wild type green fluorescent protein (wtGFP) and an enhanced green fluorescent protein (eGFP). By using the wtGFP as a pilot and model system, the reactivity of cysteine residues was investigated under different sample processing conditions, followed by a stability evaluation using intact mass measurement. The subsequent complementary proteolytic peptide mappings were performed to achieve full sequence coverage of the proteins, identification of predominant modifications, and granular details of the fluorescent chromophore. The developed method was successfully applied to isolate the eGFP incorporated with nnAA from cells. This enables the verification of the specific site of nnAA incorporation, and the characterization of complex variants using de novo sequencing techniques. MS studies demonstrated that p-azido-phenylalanine (pAzF) was specifically incorporated into the desired site of eGFP with high efficiency and fidelity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信