Manolya Mujgan Yildiz , Ilker Ates , Havva Nur Gurbuz , Mehmet Altay Unal , Hasan Nazir , Aytekin Uzunoglu , Sibel A. Ozkan , Burcu DOGAN Topal
{"title":"Exploring efavirenz-DNA interactions: A multidisciplinary approach through electrochemical, toxicological, and in silico investigations","authors":"Manolya Mujgan Yildiz , Ilker Ates , Havva Nur Gurbuz , Mehmet Altay Unal , Hasan Nazir , Aytekin Uzunoglu , Sibel A. Ozkan , Burcu DOGAN Topal","doi":"10.1016/j.jpba.2025.116763","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, there has been a growing approach that approved drugs have been tested for additional purposes. Efavirenz is a non-nucleoside reverse transcriptase inhibitor used to treat human immunodeficiency virus infection. In addition, it has selective cytotoxic effects against cancer cells. This study constructed an electrochemical dsDNA nanobiosensor to monitor Efavirenz-dsDNA interaction based on the amine-functionalized multi-walled carbon nanotubes. The experimental conditions of the nanobiosensor, such as dropping the volume of nanomaterial suspension, activation of the nanosensor, and dsDNA concentration, were optimized. The peak currents of dsDNA bases were enhanced, and the peak potentials of Efavirenz have shifted to the less positive potential thanks to the modified sensor with amine-functionalized multi-walled carbon nanotubes. The interaction mechanism was also evaluated in incubated solutions. Docking calculations showed that Efavirenz is active in the large cleft regions of DNA that suggest minor groove binding. The effect of efavirenz on the expression profile of particular stress and possible DNA genotoxicity was studied via examining gene polymorphisms in hepatic cells. These findings align with previously released research that shows Efavirenz-treated hepatic cells to have altered mitochondrial function and elevated ROS levels.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"259 ","pages":"Article 116763"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525001049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, there has been a growing approach that approved drugs have been tested for additional purposes. Efavirenz is a non-nucleoside reverse transcriptase inhibitor used to treat human immunodeficiency virus infection. In addition, it has selective cytotoxic effects against cancer cells. This study constructed an electrochemical dsDNA nanobiosensor to monitor Efavirenz-dsDNA interaction based on the amine-functionalized multi-walled carbon nanotubes. The experimental conditions of the nanobiosensor, such as dropping the volume of nanomaterial suspension, activation of the nanosensor, and dsDNA concentration, were optimized. The peak currents of dsDNA bases were enhanced, and the peak potentials of Efavirenz have shifted to the less positive potential thanks to the modified sensor with amine-functionalized multi-walled carbon nanotubes. The interaction mechanism was also evaluated in incubated solutions. Docking calculations showed that Efavirenz is active in the large cleft regions of DNA that suggest minor groove binding. The effect of efavirenz on the expression profile of particular stress and possible DNA genotoxicity was studied via examining gene polymorphisms in hepatic cells. These findings align with previously released research that shows Efavirenz-treated hepatic cells to have altered mitochondrial function and elevated ROS levels.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.