Tianhai Chen , Xichen Yang , Tianshu Wang , Nengxin Li , Shun Zhu , Genlin Ji
{"title":"Underwater image quality assessment method via the fusion of visual and structural information","authors":"Tianhai Chen , Xichen Yang , Tianshu Wang , Nengxin Li , Shun Zhu , Genlin Ji","doi":"10.1016/j.image.2025.117285","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater-captured images often suffer from quality degradation due to the challenging underwater environment, leading to information loss that significantly affects their usability. Therefore, accurately predicting the quality of underwater images is crucial. To tackle this issue, this study introduces a novel Underwater Image Quality Assessment method that combines visual and structural information. First, the CIELab map, gradient feature map, and Mean Subtracted Contrast Normalized feature map of the underwater image are obtained. Then, these feature maps are divided into non-overlapping 32x32 patches, and each patch is fed into the corresponding sub-network. This method allows for a comprehensive description of the changes in visual and structural information resulting from quality degradation in underwater images. Subsequently, the features extracted by the multipath network are fused using a feature fusion network to promote feature complementarity and overcome the limitations of individual features. Finally, the relationship between underwater image quality and fusion features was learned to obtain an evaluation model. Furthermore, the quality of the underwater image can be measured by combining the quality prediction scores of different patches. Experimental results on underwater image datasets demonstrate that the proposed method can achieve more accurate and stable quality measurement results with a more lightweight structure. Meanwhile, performance comparisons on natural image datasets and screen content image datasets confirm that the proposed method is more applicable for complex application scenarios than existing methods. The code is open-source and available at <span><span>https://github.com/dart-into/UIQAVSI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"136 ","pages":"Article 117285"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater-captured images often suffer from quality degradation due to the challenging underwater environment, leading to information loss that significantly affects their usability. Therefore, accurately predicting the quality of underwater images is crucial. To tackle this issue, this study introduces a novel Underwater Image Quality Assessment method that combines visual and structural information. First, the CIELab map, gradient feature map, and Mean Subtracted Contrast Normalized feature map of the underwater image are obtained. Then, these feature maps are divided into non-overlapping 32x32 patches, and each patch is fed into the corresponding sub-network. This method allows for a comprehensive description of the changes in visual and structural information resulting from quality degradation in underwater images. Subsequently, the features extracted by the multipath network are fused using a feature fusion network to promote feature complementarity and overcome the limitations of individual features. Finally, the relationship between underwater image quality and fusion features was learned to obtain an evaluation model. Furthermore, the quality of the underwater image can be measured by combining the quality prediction scores of different patches. Experimental results on underwater image datasets demonstrate that the proposed method can achieve more accurate and stable quality measurement results with a more lightweight structure. Meanwhile, performance comparisons on natural image datasets and screen content image datasets confirm that the proposed method is more applicable for complex application scenarios than existing methods. The code is open-source and available at https://github.com/dart-into/UIQAVSI.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.