Evgeniy S. Shilkin , Daria V. Petrova , Alexander A. Kruchinin , Dmitry O. Zharkov , Alena V. Makarova
{"title":"The effect of methylation and hydroxymethylation of cytosine on activity and fidelity of Pol λ and Pol β","authors":"Evgeniy S. Shilkin , Daria V. Petrova , Alexander A. Kruchinin , Dmitry O. Zharkov , Alena V. Makarova","doi":"10.1016/j.dnarep.2025.103815","DOIUrl":null,"url":null,"abstract":"<div><div>Сytosine methylation in CpG dinucleotides is the most common epigenetic mark in human cells. Under active demethylation process 5-methylcytosine (mC) can be converted to 5-hydroxymethylcytosine (hmC). Cytosine methylation increases the risk of adjacent nucleotide damage, including the oxidation of guanine. DNA polymerases might encounter mC and hmC during DNA repair or translesion synthesis. Here, we analyze the activity of X-family polymerases Pol β and Pol λ opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that hmC has no pronounced effect on Pol β and Pol λ activity while cytosine methylation moderately suppresses the efficiency of dGMP incorporation by Pol β but not Pol λ. Pol λ was not affected by + 2 cytosine methylation when synthesizing across 8-oxoG. In contrast, cytosine methylation slightly increased incorporation of dCMP opposite 8-oxoG adjacent to mC but reduced the extension of the 8-oxoG:C pair by Pol β.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"148 ","pages":"Article 103815"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Сytosine methylation in CpG dinucleotides is the most common epigenetic mark in human cells. Under active demethylation process 5-methylcytosine (mC) can be converted to 5-hydroxymethylcytosine (hmC). Cytosine methylation increases the risk of adjacent nucleotide damage, including the oxidation of guanine. DNA polymerases might encounter mC and hmC during DNA repair or translesion synthesis. Here, we analyze the activity of X-family polymerases Pol β and Pol λ opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that hmC has no pronounced effect on Pol β and Pol λ activity while cytosine methylation moderately suppresses the efficiency of dGMP incorporation by Pol β but not Pol λ. Pol λ was not affected by + 2 cytosine methylation when synthesizing across 8-oxoG. In contrast, cytosine methylation slightly increased incorporation of dCMP opposite 8-oxoG adjacent to mC but reduced the extension of the 8-oxoG:C pair by Pol β.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.