Christophe Bellégo , David Benatia , Vincent Dortet-Bernadet
{"title":"The chained difference-in-differences","authors":"Christophe Bellégo , David Benatia , Vincent Dortet-Bernadet","doi":"10.1016/j.jeconom.2024.105783","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the identification, estimation, and inference of long-term (binary) treatment effect parameters when balanced panel data is not available, or consists of only a subset of the available data. We develop a new estimator: the chained difference-in-differences, which leverages the overlapping structure of many unbalanced panel data sets. This approach consists in aggregating a collection of short-term treatment effects estimated on multiple incomplete panels. Our estimator accommodates (1) multiple time periods, (2) variation in treatment timing, (3) treatment effect heterogeneity, (4) general missing data patterns, and (5) sample selection on observables. We establish the asymptotic properties of the proposed estimator and discuss identification and efficiency gains in comparison to existing methods. Finally, we illustrate its relevance through (i) numerical simulations, and (ii) an application about the effects of an innovation policy in France.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"248 ","pages":"Article 105783"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001295","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the identification, estimation, and inference of long-term (binary) treatment effect parameters when balanced panel data is not available, or consists of only a subset of the available data. We develop a new estimator: the chained difference-in-differences, which leverages the overlapping structure of many unbalanced panel data sets. This approach consists in aggregating a collection of short-term treatment effects estimated on multiple incomplete panels. Our estimator accommodates (1) multiple time periods, (2) variation in treatment timing, (3) treatment effect heterogeneity, (4) general missing data patterns, and (5) sample selection on observables. We establish the asymptotic properties of the proposed estimator and discuss identification and efficiency gains in comparison to existing methods. Finally, we illustrate its relevance through (i) numerical simulations, and (ii) an application about the effects of an innovation policy in France.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.