Nianfeng Zhang , Ailing Yang , Andeng Liu , Guoxi Shao , Xixi Wang , Yingjin Luo , Zhihua Liu , Yating Shi , Na Li , Wenxi Guo , Wu Qiu , Dapeng Yang
{"title":"Advanced Braille recognition based on protein biomimetic skin mechanical sensors","authors":"Nianfeng Zhang , Ailing Yang , Andeng Liu , Guoxi Shao , Xixi Wang , Yingjin Luo , Zhihua Liu , Yating Shi , Na Li , Wenxi Guo , Wu Qiu , Dapeng Yang","doi":"10.1016/j.jsamd.2025.100869","DOIUrl":null,"url":null,"abstract":"<div><div>Tactile perception, dominated by human skin, plays an important role in human-nature interaction, especially when visual perception is limited. The key to mimicking skin tactile perception is to address skin-like properties of materials and integration of biomimetic tactile functions. To be competent in bionic skin, composite silk fibroin (SF) films possessing high tensile properties (159.71 %) and hydrogels with elasticity (54.42 %) were prepared through a mesoscopic reconstruction strategy of SF materials, using fish scale gelatin molecules as mesoscopic templates to regulate the nucleation and crystallization kinetics of SF molecules. In addition, inspired by the mechanoreceptors, a bimodal protein bionic skin (BPBS) was prepared by horizontally integrating a single-electrode triboelectric sensor and a capacitive sensing array, which can work in sliding and pressing modes to mimic the sliding touch and pressing touch of the finger, respectively. The system achieves a 99 % Braille recognition accuracy in sliding mode through a deep learning algorithm, and Bluetooth technology enables real-time wireless Braille recognition in pressing mode, synergistically enhancing the robustness and practicality of BPBS. This research provides novel insights into enhancing human touch perception, human-computer interaction, and the advancement of intelligent prosthetics, marking a significant stride in the development of bionic skins with multimodal sensing capabilities.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 2","pages":"Article 100869"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246821792500022X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile perception, dominated by human skin, plays an important role in human-nature interaction, especially when visual perception is limited. The key to mimicking skin tactile perception is to address skin-like properties of materials and integration of biomimetic tactile functions. To be competent in bionic skin, composite silk fibroin (SF) films possessing high tensile properties (159.71 %) and hydrogels with elasticity (54.42 %) were prepared through a mesoscopic reconstruction strategy of SF materials, using fish scale gelatin molecules as mesoscopic templates to regulate the nucleation and crystallization kinetics of SF molecules. In addition, inspired by the mechanoreceptors, a bimodal protein bionic skin (BPBS) was prepared by horizontally integrating a single-electrode triboelectric sensor and a capacitive sensing array, which can work in sliding and pressing modes to mimic the sliding touch and pressing touch of the finger, respectively. The system achieves a 99 % Braille recognition accuracy in sliding mode through a deep learning algorithm, and Bluetooth technology enables real-time wireless Braille recognition in pressing mode, synergistically enhancing the robustness and practicality of BPBS. This research provides novel insights into enhancing human touch perception, human-computer interaction, and the advancement of intelligent prosthetics, marking a significant stride in the development of bionic skins with multimodal sensing capabilities.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.