Long-run risk in stationary vector autoregressive models

IF 9.9 3区 经济学 Q1 ECONOMICS
Christian Gourieroux , Joann Jasiak
{"title":"Long-run risk in stationary vector autoregressive models","authors":"Christian Gourieroux ,&nbsp;Joann Jasiak","doi":"10.1016/j.jeconom.2024.105905","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a local-to-unity/small sigma model for stationary processes with long-range persistence and non-negligible long-run prediction and estimation risks. The model represents a process containing unobserved short and long-run components measured on different time scales. The short-run component is defined in calendar time, while the long-run component evolves in rescaled time with ultra-long units. We develop estimation and long-run prediction methods for time series with multivariate Vector Autoregressive (VAR) short-run components and reveal the impossibility of estimating consistently some of the long-run parameters, which causes significant estimation and prediction risks in the long run. A simulation study and an application to macroeconomic data illustrate the approach.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"248 ","pages":"Article 105905"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002562","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a local-to-unity/small sigma model for stationary processes with long-range persistence and non-negligible long-run prediction and estimation risks. The model represents a process containing unobserved short and long-run components measured on different time scales. The short-run component is defined in calendar time, while the long-run component evolves in rescaled time with ultra-long units. We develop estimation and long-run prediction methods for time series with multivariate Vector Autoregressive (VAR) short-run components and reveal the impossibility of estimating consistently some of the long-run parameters, which causes significant estimation and prediction risks in the long run. A simulation study and an application to macroeconomic data illustrate the approach.
平稳向量自回归模型的长期风险
本文介绍了具有长期持续和不可忽略的长期预测和估计风险的平稳过程的局部到单位/小西格玛模型。该模型代表了一个包含在不同时间尺度上测量的未观察到的短期和长期成分的过程。短期组件以日历时间定义,而长期组件以超长单位在重新缩放的时间中演变。本文研究了具有多元向量自回归(VAR)短期分量的时间序列的估计和长期预测方法,揭示了一些长期参数的不可能一致性估计,这导致了长期的估计和预测风险。模拟研究和对宏观经济数据的应用说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信