TACMT: Text-aware cross-modal transformer for visual grounding on high-resolution SAR images

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Tianyang Li , Chao Wang , Sirui Tian , Bo Zhang , Fan Wu , Yixian Tang , Hong Zhang
{"title":"TACMT: Text-aware cross-modal transformer for visual grounding on high-resolution SAR images","authors":"Tianyang Li ,&nbsp;Chao Wang ,&nbsp;Sirui Tian ,&nbsp;Bo Zhang ,&nbsp;Fan Wu ,&nbsp;Yixian Tang ,&nbsp;Hong Zhang","doi":"10.1016/j.isprsjprs.2025.02.022","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel task of visual grounding for high-resolution synthetic aperture radar images (SARVG). SARVG aims to identify the referred object in images through natural language instructions. While object detection on SAR images has been extensively investigated, identifying objects based on natural language remains under-explored. Due to the unique satellite view and side-look geometry, substantial expertise is often required to interpret objects, making it challenging to generalize across different sensors. Therefore, we propose to construct a dataset and develop multimodal deep learning models for the SARVG task. Our contributions can be summarized as follows. Using power transmission tower detection as an example, we have built a new benchmark of SARVG based on images from different SAR sensors to fully promote SARVG research. Subsequently, a novel text-aware cross-modal Transformer (TACMT) is proposed which follows DETR’s architecture. We develop a cross-modal encoder to enhance the visual features associated with the textual descriptions. Next, a text-aware query selection module is devised to select relevant context features as the decoder query. To retrieve the object from various scenes, we further design a cross-scale fusion module to fuse features from different levels for accurate target localization. Finally, extensive experiments on our dataset and widely used public datasets have demonstrated the effectiveness of our proposed model. This work provides valuable insights for SAR image interpretation. The code and dataset are available at <span><span>https://github.com/CAESAR-Radi/TACMT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"222 ","pages":"Pages 152-166"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000802","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel task of visual grounding for high-resolution synthetic aperture radar images (SARVG). SARVG aims to identify the referred object in images through natural language instructions. While object detection on SAR images has been extensively investigated, identifying objects based on natural language remains under-explored. Due to the unique satellite view and side-look geometry, substantial expertise is often required to interpret objects, making it challenging to generalize across different sensors. Therefore, we propose to construct a dataset and develop multimodal deep learning models for the SARVG task. Our contributions can be summarized as follows. Using power transmission tower detection as an example, we have built a new benchmark of SARVG based on images from different SAR sensors to fully promote SARVG research. Subsequently, a novel text-aware cross-modal Transformer (TACMT) is proposed which follows DETR’s architecture. We develop a cross-modal encoder to enhance the visual features associated with the textual descriptions. Next, a text-aware query selection module is devised to select relevant context features as the decoder query. To retrieve the object from various scenes, we further design a cross-scale fusion module to fuse features from different levels for accurate target localization. Finally, extensive experiments on our dataset and widely used public datasets have demonstrated the effectiveness of our proposed model. This work provides valuable insights for SAR image interpretation. The code and dataset are available at https://github.com/CAESAR-Radi/TACMT.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信