{"title":"Identifying independent components and internal process order parameters in nonequilibrium multicomponent nonstoichiometric compounds","authors":"Yanzhou Ji , Yueze Tan , Long-Qing Chen","doi":"10.1016/j.calphad.2025.102807","DOIUrl":null,"url":null,"abstract":"<div><div>In CALPHAD-type thermodynamic databases, nonstoichiometric compounds are typically described by sublattice models where the sublattice site fractions represent the occupation probability of different atomic, ionic or defect species on different sublattices. Here, we develop a general procedure and corresponding linear algebra tools for converting the sublattice site fractions to a combination of independent component compositions and internal process order parameters describing the extent of internal atomic exchange, electronic redox and defect generation reactions. We apply them to a number of nonstoichiometric phases in thermodynamic databases and literature. The general procedure can be applied to constructing thermodynamic databases in terms of internal process order parameters for nonstoichiometric phases in multicomponent systems such as high-entropy oxides and alloys, which can be utilized to model their kinetics of nonequilibrium processes and microstructure evolution.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"89 ","pages":"Article 102807"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In CALPHAD-type thermodynamic databases, nonstoichiometric compounds are typically described by sublattice models where the sublattice site fractions represent the occupation probability of different atomic, ionic or defect species on different sublattices. Here, we develop a general procedure and corresponding linear algebra tools for converting the sublattice site fractions to a combination of independent component compositions and internal process order parameters describing the extent of internal atomic exchange, electronic redox and defect generation reactions. We apply them to a number of nonstoichiometric phases in thermodynamic databases and literature. The general procedure can be applied to constructing thermodynamic databases in terms of internal process order parameters for nonstoichiometric phases in multicomponent systems such as high-entropy oxides and alloys, which can be utilized to model their kinetics of nonequilibrium processes and microstructure evolution.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.