{"title":"Unraveling the role of miR-767 in tumor progression: Mechanisms and clinical implications","authors":"Zheng Fu , Chenghong Jin , Sihan Yu , Hening Xu , Haoyu Zhang , Mingxiao Qiu , Jingyin Dong , Shiwei Duan","doi":"10.1016/j.gene.2025.149366","DOIUrl":null,"url":null,"abstract":"<div><div>MicroRNAs (miRNAs), a distinctive class of small single-stranded non-coding RNA molecules typically spanning between 21 and 23 nucleotides, hold a pivotal position within the intricate regulatory network governing gene expression. Notably, miR-767, located on chromosome Xq28, has emerged as a significant player in tumor development, with its two mature products, miR-767-3p and miR-767-5p, garnering considerable attention in scientific inquiry. Extensive investigations reveal aberrant expression patterns of miR-767 across a spectrum of cancers affecting neurological, digestive, reproductive, urinary, and respiratory systems. Remarkably, miR-767 exhibits substantial upregulation in 13 distinct cancer types and demonstrates precise targeting of at least 14 pivotal protein-coding genes (PCGs) crucial for regulating cellular processes including the cell cycle, proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration. Moreover, the expression level of miR-767 bears significant implications for cancer patient diagnosis, prognosis, and drug sensitivity, thus offering novel insights for clinical tumor management. At the mechanistic level, miR-767-5p and miR-767-3p intricately participate in the regulation of key signaling pathways, with miR-767-5p influencing JAK/STAT, EPK1/2, and PI3K/Akt pathways, while miR-767-3p predominantly affects TGF-β and PI3K/Akt pathways. Notably, both miRNAs converge on the PI3K/Akt pathway, underscoring its pivotal role in their joint regulation. This review provides a comprehensive analysis of the intricate mechanisms underlying miR-767-mediated tumor progression through the modulation of diverse target genes, and explores the potential correlation between host gene GABRA3 transcription and the expression of these miRNAs. Furthermore, the review systematically delineates the binding sites of miR-767-5p and miR-767-3p with circRNA and target genes, alongside the PCGs regulated by miR-767, offering profound insights into their multifaceted roles in tumor development. In essence, this review not only comprehensively elucidates the pivotal role of miR-767 in tumor progression but also provides valuable cues and avenues for future research, thereby fostering deeper scientific inquiry within the realm of cancer research.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"949 ","pages":"Article 149366"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925001544","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs), a distinctive class of small single-stranded non-coding RNA molecules typically spanning between 21 and 23 nucleotides, hold a pivotal position within the intricate regulatory network governing gene expression. Notably, miR-767, located on chromosome Xq28, has emerged as a significant player in tumor development, with its two mature products, miR-767-3p and miR-767-5p, garnering considerable attention in scientific inquiry. Extensive investigations reveal aberrant expression patterns of miR-767 across a spectrum of cancers affecting neurological, digestive, reproductive, urinary, and respiratory systems. Remarkably, miR-767 exhibits substantial upregulation in 13 distinct cancer types and demonstrates precise targeting of at least 14 pivotal protein-coding genes (PCGs) crucial for regulating cellular processes including the cell cycle, proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration. Moreover, the expression level of miR-767 bears significant implications for cancer patient diagnosis, prognosis, and drug sensitivity, thus offering novel insights for clinical tumor management. At the mechanistic level, miR-767-5p and miR-767-3p intricately participate in the regulation of key signaling pathways, with miR-767-5p influencing JAK/STAT, EPK1/2, and PI3K/Akt pathways, while miR-767-3p predominantly affects TGF-β and PI3K/Akt pathways. Notably, both miRNAs converge on the PI3K/Akt pathway, underscoring its pivotal role in their joint regulation. This review provides a comprehensive analysis of the intricate mechanisms underlying miR-767-mediated tumor progression through the modulation of diverse target genes, and explores the potential correlation between host gene GABRA3 transcription and the expression of these miRNAs. Furthermore, the review systematically delineates the binding sites of miR-767-5p and miR-767-3p with circRNA and target genes, alongside the PCGs regulated by miR-767, offering profound insights into their multifaceted roles in tumor development. In essence, this review not only comprehensively elucidates the pivotal role of miR-767 in tumor progression but also provides valuable cues and avenues for future research, thereby fostering deeper scientific inquiry within the realm of cancer research.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.