Zeeshan Abbas , Sunyeup Kim , Nangkyeong Lee , Syed Aadil Waheed Kazmi , Seung Won Lee
{"title":"A robust ensemble framework for anticancer peptide classification using multi-model voting approach","authors":"Zeeshan Abbas , Sunyeup Kim , Nangkyeong Lee , Syed Aadil Waheed Kazmi , Seung Won Lee","doi":"10.1016/j.compbiomed.2025.109750","DOIUrl":null,"url":null,"abstract":"<div><div>Anticancer peptides (ACPs) hold great potential for cancer therapeutics, yet accurately identifying them remains a challenging task due to the complexity of peptide sequences and their interactions with biological systems. In this study, we propose a novel machine learning-based framework for ACP classification, integrating multiple feature sets, including sequence composition, physicochemical properties, and embedding features derived from pre-trained language models. We evaluate the performance of various classifiers on benchmark datasets and compare our model against state-of-the-art methods. The results demonstrate that our model outperforms existing methods such as UniDL4BioPep, ACPred-Fuse, and iACP with an accuracy of 75.58%, an AUC of 0.8272, and an MCC of 0.5119. Our approach provides a more balanced sensitivity of 0.7384 and specificity of 0.773, ensuring robust identification of both ACPs and non-ACPs. These findings suggest that incorporating diverse feature sets can significantly enhance ACP classification, potentially facilitating the discovery of novel anticancer peptides for therapeutic applications.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109750"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525001003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anticancer peptides (ACPs) hold great potential for cancer therapeutics, yet accurately identifying them remains a challenging task due to the complexity of peptide sequences and their interactions with biological systems. In this study, we propose a novel machine learning-based framework for ACP classification, integrating multiple feature sets, including sequence composition, physicochemical properties, and embedding features derived from pre-trained language models. We evaluate the performance of various classifiers on benchmark datasets and compare our model against state-of-the-art methods. The results demonstrate that our model outperforms existing methods such as UniDL4BioPep, ACPred-Fuse, and iACP with an accuracy of 75.58%, an AUC of 0.8272, and an MCC of 0.5119. Our approach provides a more balanced sensitivity of 0.7384 and specificity of 0.773, ensuring robust identification of both ACPs and non-ACPs. These findings suggest that incorporating diverse feature sets can significantly enhance ACP classification, potentially facilitating the discovery of novel anticancer peptides for therapeutic applications.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.