Estimation of subcritical Galton Watson processes with correlated immigration

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Yacouba Boubacar Maïnassara , Landy Rabehasaina
{"title":"Estimation of subcritical Galton Watson processes with correlated immigration","authors":"Yacouba Boubacar Maïnassara ,&nbsp;Landy Rabehasaina","doi":"10.1016/j.spa.2025.104614","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an observed subcritical Galton Watson process <span><math><mrow><mo>{</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span> with correlated stationary immigration process <span><math><mrow><mo>{</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span>. Two situations are presented. The first one is when <span><math><mrow><mtext>Cov</mtext><mrow><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> for <span><math><mi>k</mi></math></span> larger than some <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>: a consistent estimator for the reproduction and mean immigration rates is given, and a central limit theorem is proved. The second one is when <span><math><mrow><mo>{</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span> has general correlation structure: under mixing assumptions, we exhibit an estimator for the logarithm of the reproduction rate and we prove that it converges in quadratic mean with explicit speed. In addition, when the mixing coefficients decrease fast enough, we provide and prove a two terms expansion for the estimator. Numerical illustrations are provided.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"184 ","pages":"Article 104614"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000559","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an observed subcritical Galton Watson process {Yn,nZ} with correlated stationary immigration process {ϵn,nZ}. Two situations are presented. The first one is when Cov(ϵ0,ϵk)=0 for k larger than some k0: a consistent estimator for the reproduction and mean immigration rates is given, and a central limit theorem is proved. The second one is when {ϵn,nZ} has general correlation structure: under mixing assumptions, we exhibit an estimator for the logarithm of the reproduction rate and we prove that it converges in quadratic mean with explicit speed. In addition, when the mixing coefficients decrease fast enough, we provide and prove a two terms expansion for the estimator. Numerical illustrations are provided.
具有相关迁移的次临界高尔顿-沃森过程的估计
我们考虑一个观测到的次临界高尔顿沃森过程{Yn,n∈Z}与相关平稳迁移过程{ϵn,n∈Z}。提出了两种情况。第一个是当Cov(ϵ0,ϵk)=0且k大于某个k时,给出了繁殖率和平均迁移率的一致估计,并证明了中心极限定理。第二种是当{ϵn,n∈Z}具有一般相关结构时,在混合假设下,我们给出了繁殖率对数的一个估计量,并证明了它收敛于二次均值并具有显式的速度。此外,当混合系数下降得足够快时,我们给出并证明了估计量的两项展开式。给出了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信