Privacy-Preserving Epidemiological Modeling on Mobile Graphs

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Daniel Günther;Marco Holz;Benjamin Judkewitz;Hellen Möllering;Benny Pinkas;Thomas Schneider;Ajith Suresh
{"title":"Privacy-Preserving Epidemiological Modeling on Mobile Graphs","authors":"Daniel Günther;Marco Holz;Benjamin Judkewitz;Hellen Möllering;Benny Pinkas;Thomas Schneider;Ajith Suresh","doi":"10.1109/TIFS.2025.3546850","DOIUrl":null,"url":null,"abstract":"The latest pandemic COVID-19 brought governments worldwide to use various containment measures to control its spread, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented. Unfortunately, the scarcity of relevant empirical data, specifically detailed social contact graphs, hampered their predictive accuracy. As this data is inherently privacy-critical, a method is urgently needed to perform powerful epidemiological simulations on real-world contact graphs without disclosing any sensitive information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework enabling standard models for infectious disease on a population’s real contact graph while keeping all contact information locally on the participants’ devices. As a building block of independent interest, we present PIR-SUM, a novel extension to private information retrieval for secure download of element sums from a database. Our protocols are supported by a proof-of-concept implementation, demonstrating a 2-week simulation over half a million participants completed in 7 minutes, with each participant communicating less than 50 KB.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3088-3101"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908407/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The latest pandemic COVID-19 brought governments worldwide to use various containment measures to control its spread, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented. Unfortunately, the scarcity of relevant empirical data, specifically detailed social contact graphs, hampered their predictive accuracy. As this data is inherently privacy-critical, a method is urgently needed to perform powerful epidemiological simulations on real-world contact graphs without disclosing any sensitive information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework enabling standard models for infectious disease on a population’s real contact graph while keeping all contact information locally on the participants’ devices. As a building block of independent interest, we present PIR-SUM, a novel extension to private information retrieval for secure download of element sums from a database. Our protocols are supported by a proof-of-concept implementation, demonstrating a 2-week simulation over half a million participants completed in 7 minutes, with each participant communicating less than 50 KB.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信