Soil bacterial community composition but not alpha diversity altered along a gradient of Spartina alterniflora invasion on the coast of Yellow Sea, China
Li Yang, Yue Peng, Shuang Wang, Chenxuan Rong, Huice Dong, Hongshan Li, Baoming Ge
{"title":"Soil bacterial community composition but not alpha diversity altered along a gradient of Spartina alterniflora invasion on the coast of Yellow Sea, China","authors":"Li Yang, Yue Peng, Shuang Wang, Chenxuan Rong, Huice Dong, Hongshan Li, Baoming Ge","doi":"10.3389/fmars.2025.1531902","DOIUrl":null,"url":null,"abstract":"Introduction<jats:italic>Spartina alterniflora</jats:italic> invasion may alter the characteristics and functions of the coastal wetland ecosystems. Previous studies have shown that invasion changes the biogeochemical processes and microbial diversity in marsh ecosystems; however, knowledge of the changes in bacterial communities and their function at different soil depths during invasion remains limited.MethodsIn the present study, we investigated <jats:italic>S. alterniflora</jats:italic> invasion on the dynamic changes of soil bacterial communities using Illumina MiSeq sequencing analyses of 16S rRNA at different soil depths (i.e., 0–10, 10–20, and 20–40 cm) during the invasive process (i.e., 1, 4, 7, and 12 years), as well as the potential correlations between soil physicochemical characteristics and enzyme activities.ResultsThe invasion of <jats:italic>S. alterniflora</jats:italic> did not significantly affect soil bacterial alpha diversity or the functional profiles at the first and second levels of the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, no significant changes were observed across different soil depths. However, the relative abundances of Chloroplast and Alphaproteobacteria increased from 3.03% and 5.05% in bare mudflat to 13.61% and 8.95% in the 12-year-old <jats:italic>S. alterniflora</jats:italic> invaded soil, respectively, whereas those of Deltaproteobacteria, Acidimicrobiia, and Bacilli decreased after <jats:italic>S. alterniflora</jats:italic> invasion for approximately 12 years. The relative abundances of soil bacteria varied with soil depth. Total phosphorus, carbon-to-nitrogen ratio, total carbon, and catalase activity were the key factors affecting soil bacterial community composition.DiscussionThe soil physicochemical characteristics changes caused by invasion may temporarily enhance soil fertility, they can lead to long-term wetland degradation through changed biological community and altered nutrient dynamics. This study provides a comprehensive understanding of the dynamic changes in bacterial communities, soil physicochemical characteristics, and enzyme activities during <jats:italic>S. alterniflora</jats:italic> invasion on coastal wetlands.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"90 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1531902","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionSpartina alterniflora invasion may alter the characteristics and functions of the coastal wetland ecosystems. Previous studies have shown that invasion changes the biogeochemical processes and microbial diversity in marsh ecosystems; however, knowledge of the changes in bacterial communities and their function at different soil depths during invasion remains limited.MethodsIn the present study, we investigated S. alterniflora invasion on the dynamic changes of soil bacterial communities using Illumina MiSeq sequencing analyses of 16S rRNA at different soil depths (i.e., 0–10, 10–20, and 20–40 cm) during the invasive process (i.e., 1, 4, 7, and 12 years), as well as the potential correlations between soil physicochemical characteristics and enzyme activities.ResultsThe invasion of S. alterniflora did not significantly affect soil bacterial alpha diversity or the functional profiles at the first and second levels of the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, no significant changes were observed across different soil depths. However, the relative abundances of Chloroplast and Alphaproteobacteria increased from 3.03% and 5.05% in bare mudflat to 13.61% and 8.95% in the 12-year-old S. alterniflora invaded soil, respectively, whereas those of Deltaproteobacteria, Acidimicrobiia, and Bacilli decreased after S. alterniflora invasion for approximately 12 years. The relative abundances of soil bacteria varied with soil depth. Total phosphorus, carbon-to-nitrogen ratio, total carbon, and catalase activity were the key factors affecting soil bacterial community composition.DiscussionThe soil physicochemical characteristics changes caused by invasion may temporarily enhance soil fertility, they can lead to long-term wetland degradation through changed biological community and altered nutrient dynamics. This study provides a comprehensive understanding of the dynamic changes in bacterial communities, soil physicochemical characteristics, and enzyme activities during S. alterniflora invasion on coastal wetlands.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.