Natural language processing of electronic health records for early detection of cognitive decline: a systematic review

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay
{"title":"Natural language processing of electronic health records for early detection of cognitive decline: a systematic review","authors":"Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay","doi":"10.1038/s41746-025-01527-z","DOIUrl":null,"url":null,"abstract":"<p>This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (<i>n</i> = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"84 3 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01527-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (n = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.

Abstract Image

本系统性综述评估了在电子健康记录临床笔记中检测认知障碍的自然语言处理(NLP)方法。根据 PRISMA 指南,我们分析了 18 项研究(n = 1,064,530),这些研究采用了基于规则的算法(67%)、传统机器学习(28%)和深度学习(17%)。NLP 模型在识别认知能力下降方面表现出色,灵敏度中位数为 0.88(IQR 0.74-0.91),特异性中位数为 0.96(IQR 0.81-0.99)。深度学习架构取得了更优越的结果,接收者操作特征曲线下面积高达 0.997。实施过程中面临的主要挑战包括:电子健康记录数据采集不完整、临床文档实践不一致以及外部验证有限。虽然 NLP 前景看好,但成功的临床转化需要建立标准化的方法,改善对注释数据集的访问,并制定公平的部署框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信