Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay
{"title":"Natural language processing of electronic health records for early detection of cognitive decline: a systematic review","authors":"Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay","doi":"10.1038/s41746-025-01527-z","DOIUrl":null,"url":null,"abstract":"<p>This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (<i>n</i> = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"84 3 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01527-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (n = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.