Endoplasmic reticulum stress inhibition preserves mitochondrial function and cell survival during the early onset of isoniazid-induced oxidative stress

IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Truong Thi My Nhung , Nguyen Ky Phat , Trinh Tam Anh , Tran Diem Nghi , Nguyen Quang Thu , Ara Lee , Nguyen Tran Nam Tien , Nguyen Ky Anh , Huy Truong Nguyen , Kimoon Kim , Duc Ninh Nguyen , Dong Hyun Kim , Sang Ki Park , Nguyen Phuoc Long
{"title":"Endoplasmic reticulum stress inhibition preserves mitochondrial function and cell survival during the early onset of isoniazid-induced oxidative stress","authors":"Truong Thi My Nhung ,&nbsp;Nguyen Ky Phat ,&nbsp;Trinh Tam Anh ,&nbsp;Tran Diem Nghi ,&nbsp;Nguyen Quang Thu ,&nbsp;Ara Lee ,&nbsp;Nguyen Tran Nam Tien ,&nbsp;Nguyen Ky Anh ,&nbsp;Huy Truong Nguyen ,&nbsp;Kimoon Kim ,&nbsp;Duc Ninh Nguyen ,&nbsp;Dong Hyun Kim ,&nbsp;Sang Ki Park ,&nbsp;Nguyen Phuoc Long","doi":"10.1016/j.cbi.2025.111448","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive understanding of isoniazid (INH)-mediated hepatotoxic effects is essential for developing strategies to predict and prevent severe liver toxicity in tuberculosis treatment. In this study, we used multi-omics profiling <em>in vitro</em> to investigate the toxic effects of INH, revealing significant involvement of endoplasmic reticulum (ER) stress, mitochondrial impairment, redox imbalance, and altered metabolism. Additional analysis using transcriptomics data from repeated time-course INH treatments on human hepatic microtissues revealed that cellular responses to ER stress and oxidative stress happened prior to disturbances in mitochondrial complexes. Mechanistic validation studies using time-lapse measurements of cytosolic and mitochondrial reactive oxygen species (ROS) revealed that INH initially triggered cytosolic ROS increasement and Nrf2 signaling pathway activation before mitochondrial ROS accumulation. Molecular imaging showed that INH subsequently disrupted mitochondrial function by impairing respiratory complexes I–IV and caused mitochondrial membrane proton leakage without affecting mitochondrial complex V, leading to mitochondrial depolarization and reduced ATP production. These disturbances enhanced mitochondrial fission and mitophagy. Our findings highlight the potential of inhibiting ER stress during early INH exposure to mitigate cytosolic and mitochondrial oxidative stress. We also revealed the critical role of Nrf2 signaling in protecting hepatocytes under INH-induced oxidative stress by maintaining redox homeostasis and enabling metabolic reprogramming through regulating antioxidant gene expression and cellular lipid abundance. Alternative antioxidant pathways, including selenocompound metabolism, HIF-1 signaling, and the pentose phosphate pathway, also responded to INH-induced oxidative stress. Collectively, our study emphasizes the importance of ER stress, redox imbalance, metabolic changes, and mitochondrial dysfunction that underlie INH-induced hepatotoxicity.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"411 ","pages":"Article 111448"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000927972500078X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive understanding of isoniazid (INH)-mediated hepatotoxic effects is essential for developing strategies to predict and prevent severe liver toxicity in tuberculosis treatment. In this study, we used multi-omics profiling in vitro to investigate the toxic effects of INH, revealing significant involvement of endoplasmic reticulum (ER) stress, mitochondrial impairment, redox imbalance, and altered metabolism. Additional analysis using transcriptomics data from repeated time-course INH treatments on human hepatic microtissues revealed that cellular responses to ER stress and oxidative stress happened prior to disturbances in mitochondrial complexes. Mechanistic validation studies using time-lapse measurements of cytosolic and mitochondrial reactive oxygen species (ROS) revealed that INH initially triggered cytosolic ROS increasement and Nrf2 signaling pathway activation before mitochondrial ROS accumulation. Molecular imaging showed that INH subsequently disrupted mitochondrial function by impairing respiratory complexes I–IV and caused mitochondrial membrane proton leakage without affecting mitochondrial complex V, leading to mitochondrial depolarization and reduced ATP production. These disturbances enhanced mitochondrial fission and mitophagy. Our findings highlight the potential of inhibiting ER stress during early INH exposure to mitigate cytosolic and mitochondrial oxidative stress. We also revealed the critical role of Nrf2 signaling in protecting hepatocytes under INH-induced oxidative stress by maintaining redox homeostasis and enabling metabolic reprogramming through regulating antioxidant gene expression and cellular lipid abundance. Alternative antioxidant pathways, including selenocompound metabolism, HIF-1 signaling, and the pentose phosphate pathway, also responded to INH-induced oxidative stress. Collectively, our study emphasizes the importance of ER stress, redox imbalance, metabolic changes, and mitochondrial dysfunction that underlie INH-induced hepatotoxicity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
3.90%
发文量
410
审稿时长
36 days
期刊介绍: Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信