Cancer-associated mutations in autophagy-related proteins analyzed in yeast and human cells.

Yuchen Lei, Louise Uoselis, Dimitra Dialynaki, Ying Yang, Michael Lazarou, Daniel J Klionsky
{"title":"Cancer-associated mutations in autophagy-related proteins analyzed in yeast and human cells.","authors":"Yuchen Lei, Louise Uoselis, Dimitra Dialynaki, Ying Yang, Michael Lazarou, Daniel J Klionsky","doi":"10.1080/15548627.2025.2471142","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the protein function, influence autophagy activity and further contribute to the progression of the disease. In this study, we focused on the four ATG4 isoforms, which have a higher mutation frequency compared with the other core ATG proteins (i.e. those involved in autophagosome formation). We first studied the mutations in conserved residues and characterized one cancer-associated mutation that significantly impairs protein function and autophagy activity. Extending the study, we determined a region around the mutant residue to be essential for protein function, which had yet to be examined in previous studies. In addition, we created a yeast system expressing the human ATG4B protein to study mutations in the residues that are not conserved from human to yeast. Using this yeast model, we identified six cancer-associated mutations affecting autophagy. The effects of these mutations were further tested in mammalian cells using a quadruple <i>ATG4</i> gene knockout cell line. Our study proves the principle of using human disease-associated mutations to study Atg proteins in yeast and generates a yeast tool that is helpful for a rapid screen of mutations to determine the autophagy phenotype, providing a new perspective in studying autophagy and its relation with cancer.<b>Abbreviations:</b> 4KO: <i>ATG4</i> tetra knockout; ATG: autophagy related; BafA1: bafilomycin A<sub>1</sub>; GFP: green fluorescent protein; LC3-II: PE-conjugated form of LC3B; ORF: open reading frame; PE: phosphatidylethanolamine; RFP: red fluorescent protein; SEP: superecliptic pHluorin; Ubl: ubiquitin-like; UCEC: uterine corpus endometrial carcinoma.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2471142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the protein function, influence autophagy activity and further contribute to the progression of the disease. In this study, we focused on the four ATG4 isoforms, which have a higher mutation frequency compared with the other core ATG proteins (i.e. those involved in autophagosome formation). We first studied the mutations in conserved residues and characterized one cancer-associated mutation that significantly impairs protein function and autophagy activity. Extending the study, we determined a region around the mutant residue to be essential for protein function, which had yet to be examined in previous studies. In addition, we created a yeast system expressing the human ATG4B protein to study mutations in the residues that are not conserved from human to yeast. Using this yeast model, we identified six cancer-associated mutations affecting autophagy. The effects of these mutations were further tested in mammalian cells using a quadruple ATG4 gene knockout cell line. Our study proves the principle of using human disease-associated mutations to study Atg proteins in yeast and generates a yeast tool that is helpful for a rapid screen of mutations to determine the autophagy phenotype, providing a new perspective in studying autophagy and its relation with cancer.Abbreviations: 4KO: ATG4 tetra knockout; ATG: autophagy related; BafA1: bafilomycin A1; GFP: green fluorescent protein; LC3-II: PE-conjugated form of LC3B; ORF: open reading frame; PE: phosphatidylethanolamine; RFP: red fluorescent protein; SEP: superecliptic pHluorin; Ubl: ubiquitin-like; UCEC: uterine corpus endometrial carcinoma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信