Efficient crystal structure prediction based on the symmetry principle

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yu Han, Chi Ding, Junjie Wang, Hao Gao, Jiuyang Shi, Shaobo Yu, Qiuhan Jia, Shuning Pan, Jian Sun
{"title":"Efficient crystal structure prediction based on the symmetry principle","authors":"Yu Han, Chi Ding, Junjie Wang, Hao Gao, Jiuyang Shi, Shaobo Yu, Qiuhan Jia, Shuning Pan, Jian Sun","doi":"10.1038/s43588-025-00775-z","DOIUrl":null,"url":null,"abstract":"Crystal structure prediction (CSP) is an evolving field aimed at discerning crystal structures with minimal prior information. Despite the success of various CSP algorithms, their practical applicability remains circumscribed, particularly for large and complex systems. Here, to address this challenge, we show an evolutionary structure generator within the MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) framework, inspired by the symmetry principle. This generator extracts both global and local features of explored crystal structures using group and graph theory. By integrating an on-the-fly space group miner and fragment reorganizer, augmented by symmetry-kept mutation, our approach generates higher-quality initial structures, reducing the computational costs of CSP tasks. Benchmarking tests show up to fourfold performance improvements. The method also proves valid in complex phosphorus allotrope systems. Furthermore, we apply our approach to the diamond–silicon (111)-(7 × 7) surface system, identifying up to 42 metastable structures within an 18 meV Å−2 energy range, demonstrating the efficacy of our approach in navigating challenging search spaces. This study presents a symmetry principle-biased crystal structure prediction scheme within the MAGUS framework, achieving up to a fourfold performance improvement compared with state-of-the-art methods.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 3","pages":"255-267"},"PeriodicalIF":12.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00775-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Crystal structure prediction (CSP) is an evolving field aimed at discerning crystal structures with minimal prior information. Despite the success of various CSP algorithms, their practical applicability remains circumscribed, particularly for large and complex systems. Here, to address this challenge, we show an evolutionary structure generator within the MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) framework, inspired by the symmetry principle. This generator extracts both global and local features of explored crystal structures using group and graph theory. By integrating an on-the-fly space group miner and fragment reorganizer, augmented by symmetry-kept mutation, our approach generates higher-quality initial structures, reducing the computational costs of CSP tasks. Benchmarking tests show up to fourfold performance improvements. The method also proves valid in complex phosphorus allotrope systems. Furthermore, we apply our approach to the diamond–silicon (111)-(7 × 7) surface system, identifying up to 42 metastable structures within an 18 meV Å−2 energy range, demonstrating the efficacy of our approach in navigating challenging search spaces. This study presents a symmetry principle-biased crystal structure prediction scheme within the MAGUS framework, achieving up to a fourfold performance improvement compared with state-of-the-art methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信