Variability in radiotherapy outcomes across cancer types: a comparative study of glioblastoma multiforme and low-grade gliomas.

IF 3.9 3区 医学 Q2 CELL BIOLOGY
Aging-Us Pub Date : 2025-02-27 DOI:10.18632/aging.206212
Alexander Veviorskiy, Garik V Mkrtchyan, Andreyan N Osipov, Evgeny Izumchenko, Ivan V Ozerov, Alex Aliper, Alex Zhavoronkov, Morten Scheibye-Knudsen
{"title":"Variability in radiotherapy outcomes across cancer types: a comparative study of glioblastoma multiforme and low-grade gliomas.","authors":"Alexander Veviorskiy, Garik V Mkrtchyan, Andreyan N Osipov, Evgeny Izumchenko, Ivan V Ozerov, Alex Aliper, Alex Zhavoronkov, Morten Scheibye-Knudsen","doi":"10.18632/aging.206212","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is a crucial treatment option for various cancers. However, the results of radiotherapy can vary widely across different cancer types and even among patients with the same type of cancer. This variability presents a major challenge in optimizing treatment strategies and improving patient survival. Here, we collected radiotherapy phenotype and expression data from 32 TCGA cancer datasets and performed overall survival analysis for 32 cancer types. Additionally, we conducted a signaling pathway enrichment analysis to identify key pathways involved in radiotherapy resistance and sensitivity. Our findings show that radiotherapy improves survival outcomes in certain cancer types, such as glioblasoma multiforme (GBM), while worsening outcomes in others, such as low-grade glioma (LGG). Next, we focused on exploring the differences in radiotherapy outcomes between GBM and LGG, focusing on the molecular mechanisms contributing to these variations. We identify differential regulation of pathways related to programmed cell death, DNA repair, telomere maintenance, chromosome condensation, antiviral responses, and interferon signaling between GBM and LGG patients perhaps explaining radiotherapy efficacy. A genetic analysis confirmed the importance of immune response and radiotherapy outcome for LGG patients. These insights underscore the importance of personalized treatment approaches and the need for further research to improve radiotherapy outcomes in cancer patients.</p>","PeriodicalId":55547,"journal":{"name":"Aging-Us","volume":"null ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging-Us","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18632/aging.206212","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy is a crucial treatment option for various cancers. However, the results of radiotherapy can vary widely across different cancer types and even among patients with the same type of cancer. This variability presents a major challenge in optimizing treatment strategies and improving patient survival. Here, we collected radiotherapy phenotype and expression data from 32 TCGA cancer datasets and performed overall survival analysis for 32 cancer types. Additionally, we conducted a signaling pathway enrichment analysis to identify key pathways involved in radiotherapy resistance and sensitivity. Our findings show that radiotherapy improves survival outcomes in certain cancer types, such as glioblasoma multiforme (GBM), while worsening outcomes in others, such as low-grade glioma (LGG). Next, we focused on exploring the differences in radiotherapy outcomes between GBM and LGG, focusing on the molecular mechanisms contributing to these variations. We identify differential regulation of pathways related to programmed cell death, DNA repair, telomere maintenance, chromosome condensation, antiviral responses, and interferon signaling between GBM and LGG patients perhaps explaining radiotherapy efficacy. A genetic analysis confirmed the importance of immune response and radiotherapy outcome for LGG patients. These insights underscore the importance of personalized treatment approaches and the need for further research to improve radiotherapy outcomes in cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging-Us
Aging-Us CELL BIOLOGY-
CiteScore
10.00
自引率
0.00%
发文量
595
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信