Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.

IF 7.4 1区 医学 Q1 Medicine
Xiaodan Feng, Yan Shi, Meng Wu, Guanghe Cui, Yao Du, Jie Yang, Yuyuan Xu, Wenjuan Wang, Feifei Liu
{"title":"Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.","authors":"Xiaodan Feng, Yan Shi, Meng Wu, Guanghe Cui, Yao Du, Jie Yang, Yuyuan Xu, Wenjuan Wang, Feifei Liu","doi":"10.1186/s13058-025-01971-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients.</p><p><strong>Methods: </strong>Between January 2018 and June 2023, 312 patients with histologically confirmed breast cancer were enrolled and randomly assigned to a training cohort (n = 219) and a test cohort (n = 93) in a 7:3 ratio. Next, pre-NAC and post-treatment 2-cycle ultrasound images were collected, and radiomics and deep learning features were extracted from NAC pre-treatment (Pre), post-treatment 2 cycle (Post), and Delta (pre-NAC-NAC 2 cycle) images. In the training cohort, to filter features, the intraclass correlation coefficient test, the Boruta algorithm, and the least absolute shrinkage and selection operator (LASSO) logistic regression were used. Single-modality models (Pre, Post, and Delta) were constructed based on five machine-learning classifiers. Finally, based on the classifier with the optimal predictive performance, the DLR model was constructed by combining Pre, Post, and Delta ultrasound features and was subsequently combined with clinical features to develop a combined model (Integrated). The discriminative power, predictive performance, and clinical utility of the models were further evaluated in the test cohort. Furthermore, patients were assigned into three subgroups, including the HR+/HER2-, HER2+, and TNBC subgroups, according to molecular typing to validate the predictability of the model across the different subgroups.</p><p><strong>Results: </strong>After feature screening, 16, 13, and 10 features were selected to construct the Pre model, Post model, and Delta model based on the five machine learning classifiers, respectively. The three single-modality models based on the XGBoost classifier displayed optimal predictive performance. Meanwhile, the DLR model (AUC of 0.827) was superior to the single-modality model (Pre, Post, and Delta AUCs of 0.726, 0.776, and 0.710, respectively) in terms of prediction performance. Moreover, multivariate logistic regression analysis identified Her-2 status and histological grade as independent risk factors for NAC response in breast cancer. In both the training and test cohorts, the Integrated model, which included Pre, Post, and Delta ultrasound features and clinical features, exhibited the highest predictive ability, with AUC values of 0.924 and 0.875, respectively. Likewise, the Integrated model displayed the highest predictive performance across the different subgroups.</p><p><strong>Conclusion: </strong>The Integrated model, which incorporated pre-NAC treatment and early treatment ultrasound data and clinical features, accurately predicted pCR after NAC in breast cancer patients and provided valuable insights for personalized treatment strategies, allowing for timely adjustment of chemotherapy regimens.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"30"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01971-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients.

Methods: Between January 2018 and June 2023, 312 patients with histologically confirmed breast cancer were enrolled and randomly assigned to a training cohort (n = 219) and a test cohort (n = 93) in a 7:3 ratio. Next, pre-NAC and post-treatment 2-cycle ultrasound images were collected, and radiomics and deep learning features were extracted from NAC pre-treatment (Pre), post-treatment 2 cycle (Post), and Delta (pre-NAC-NAC 2 cycle) images. In the training cohort, to filter features, the intraclass correlation coefficient test, the Boruta algorithm, and the least absolute shrinkage and selection operator (LASSO) logistic regression were used. Single-modality models (Pre, Post, and Delta) were constructed based on five machine-learning classifiers. Finally, based on the classifier with the optimal predictive performance, the DLR model was constructed by combining Pre, Post, and Delta ultrasound features and was subsequently combined with clinical features to develop a combined model (Integrated). The discriminative power, predictive performance, and clinical utility of the models were further evaluated in the test cohort. Furthermore, patients were assigned into three subgroups, including the HR+/HER2-, HER2+, and TNBC subgroups, according to molecular typing to validate the predictability of the model across the different subgroups.

Results: After feature screening, 16, 13, and 10 features were selected to construct the Pre model, Post model, and Delta model based on the five machine learning classifiers, respectively. The three single-modality models based on the XGBoost classifier displayed optimal predictive performance. Meanwhile, the DLR model (AUC of 0.827) was superior to the single-modality model (Pre, Post, and Delta AUCs of 0.726, 0.776, and 0.710, respectively) in terms of prediction performance. Moreover, multivariate logistic regression analysis identified Her-2 status and histological grade as independent risk factors for NAC response in breast cancer. In both the training and test cohorts, the Integrated model, which included Pre, Post, and Delta ultrasound features and clinical features, exhibited the highest predictive ability, with AUC values of 0.924 and 0.875, respectively. Likewise, the Integrated model displayed the highest predictive performance across the different subgroups.

Conclusion: The Integrated model, which incorporated pre-NAC treatment and early treatment ultrasound data and clinical features, accurately predicted pCR after NAC in breast cancer patients and provided valuable insights for personalized treatment strategies, allowing for timely adjustment of chemotherapy regimens.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信