Controlled activation modulates T-cell expansion and phenotype in stirred-tank bioreactors.

IF 3.7 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Margarida S Costa, Constança M Costa, Leonor N Matos, Maria João Sebastião, Nádia Duarte, Marta H G Costa, Margarida Serra
{"title":"Controlled activation modulates T-cell expansion and phenotype in stirred-tank bioreactors.","authors":"Margarida S Costa, Constança M Costa, Leonor N Matos, Maria João Sebastião, Nádia Duarte, Marta H G Costa, Margarida Serra","doi":"10.1016/j.jcyt.2025.02.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background aims: </strong>Autologous cell therapies using chimeric antigen receptor (CAR) T cells have shown significant clinical success in hematologic cancers. However, current production platforms face challenges in scaling up to produce sufficient numbers of cells to meet the demands of multi-dose regimens. Additionally, tight control over critical process parameters during the distinct stages of cell production is required to maximize key phenotypic characteristics of CAR T-cell products that correlate with improved clinical responses. To address these issues, we propose an integrated manufacturing process in stirred-tank bioreactors (STBs) for controlled T-cell activation and expansion.</p><p><strong>Methods: </strong>By tailoring the stirring profile of STBs (Ambr® 15 bioreactors; Sartorius, Göttingen, Germany), microbeads functionalized with anti-CD3/CD28 antibodies allow control over the initiation/termination of T-cell activation without requiring additional washing steps to remove the activation signaling cues.</p><p><strong>Results: </strong>This strategy resulted in up to a 10-fold increase in T-cell numbers compared with conventional static culture systems, resulting in a final cell concentration of 2.5 × 10<sup>7</sup> cells/mL after 10 days of culture. Importantly, a higher proportion of CD8<sup>+</sup> T cells and lower expression of exhaustion markers programmed cell death protein 1, lymphocyte activation gene 3 and T-cell immunoglobulin and mucin domain 3 (<8%) were obtained in STBs relative to static cultures. Additionally, the anti-CD3/CD28-functionalized microbeads were as efficient as the standard TransAct™ (Miltenyi Biotec, Bergisch Gladbach, Germany) stimuli in activating and expanding T cells in STBs.</p><p><strong>Conclusions: </strong>Overall, this approach presents a promising strategy for the scalable and tightly controlled manufacturing of T-cell therapies, particularly focusing on the T-cell activation step while minimizing manual operations, thus contributing towards more effective and cost-efficient immunotherapies.</p>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcyt.2025.02.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background aims: Autologous cell therapies using chimeric antigen receptor (CAR) T cells have shown significant clinical success in hematologic cancers. However, current production platforms face challenges in scaling up to produce sufficient numbers of cells to meet the demands of multi-dose regimens. Additionally, tight control over critical process parameters during the distinct stages of cell production is required to maximize key phenotypic characteristics of CAR T-cell products that correlate with improved clinical responses. To address these issues, we propose an integrated manufacturing process in stirred-tank bioreactors (STBs) for controlled T-cell activation and expansion.

Methods: By tailoring the stirring profile of STBs (Ambr® 15 bioreactors; Sartorius, Göttingen, Germany), microbeads functionalized with anti-CD3/CD28 antibodies allow control over the initiation/termination of T-cell activation without requiring additional washing steps to remove the activation signaling cues.

Results: This strategy resulted in up to a 10-fold increase in T-cell numbers compared with conventional static culture systems, resulting in a final cell concentration of 2.5 × 107 cells/mL after 10 days of culture. Importantly, a higher proportion of CD8+ T cells and lower expression of exhaustion markers programmed cell death protein 1, lymphocyte activation gene 3 and T-cell immunoglobulin and mucin domain 3 (<8%) were obtained in STBs relative to static cultures. Additionally, the anti-CD3/CD28-functionalized microbeads were as efficient as the standard TransAct™ (Miltenyi Biotec, Bergisch Gladbach, Germany) stimuli in activating and expanding T cells in STBs.

Conclusions: Overall, this approach presents a promising strategy for the scalable and tightly controlled manufacturing of T-cell therapies, particularly focusing on the T-cell activation step while minimizing manual operations, thus contributing towards more effective and cost-efficient immunotherapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotherapy
Cytotherapy 医学-生物工程与应用微生物
CiteScore
6.30
自引率
4.40%
发文量
683
审稿时长
49 days
期刊介绍: The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信