Characterization of gut microbiota in very low birth weight infants with versus without bronchopulmonary dysplasia.

IF 3.2 Q1 PEDIATRICS
Anucha Thatrimontrichai, Manapat Praditaukrit, Gunlawadee Maneenil, Supaporn Dissaneevate, Kamonnut Singkhamanan, Komwit Surachat
{"title":"Characterization of gut microbiota in very low birth weight infants with versus without bronchopulmonary dysplasia.","authors":"Anucha Thatrimontrichai, Manapat Praditaukrit, Gunlawadee Maneenil, Supaporn Dissaneevate, Kamonnut Singkhamanan, Komwit Surachat","doi":"10.3345/cep.2024.01718","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gut-lung crosstalk is a pathway involving interactions between the gastrointestinal, respiratory, and immune systems. The immune responses of the gut and lungs are intricately linked, and previous studies demonstrated that the gut microbiota can influence systemic immune responses in the respiratory system as well as bronchopulmonary dysplasia (BPD).</p><p><strong>Purpose: </strong>To analyze the composition of the gut microbiota in very low birth weight infants with versus without BPD.</p><p><strong>Methods: </strong>Secondary data from a previous randomized controlled trial were analyzed. Microbiomes were analyzed using QIIME 2 software. Gut microbiota diversity and abundance were compared between groups.</p><p><strong>Results: </strong>Fifty-one neonates were classified into the BPD (n=24) and non-BPD (n=27) groups, between which no differences were noted in the alpha and beta diversities of the gut microbiota. In both groups, Proteobacteria, Gammaproteobacteria, and Klebsiella were the predominant phyla, class, and genus in gut microbiota, respectively. Enterococcus, Acinetobacter, Elizabethkingia, Clostridium sensu stricto 1, Bacteroides, Streptococcus, and Serratia were more abundant, whereas Klebsiella, Faecalibacterium, Escherichia-Shigella, Enterobacter, Bifidobacterium, Veillonella, Staphylococcus, and Enterobacteriaceae were less abundant in the BPD versus non-BPD group. Faecalibacterium, Roseburia, Clostridium, Eubacterium, and Coprococcus were significantly more abundant in the non-BPD versus BPD group.</p><p><strong>Conclusion: </strong>The alpha and beta diversities of the gut microbiota did not differ significantly between the BPD and non-BPD groups. However, in terms of relative abundance, the presence of common respiratory pathogens was notable in the BPD group. Conversely, the non-BPD group had a significantly higher prevalence of anaerobic taxa known for their capacity to produce butyrate, a key component of postbiotics. Clinical Trial Registration: This trial was prospectively registered at Thai Clinical Trials (https://www.thaiclinicaltrials.org/export/pdf/TCTR20180306002; first posted registration: March 6, 2018).</p>","PeriodicalId":36018,"journal":{"name":"Clinical and Experimental Pediatrics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3345/cep.2024.01718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gut-lung crosstalk is a pathway involving interactions between the gastrointestinal, respiratory, and immune systems. The immune responses of the gut and lungs are intricately linked, and previous studies demonstrated that the gut microbiota can influence systemic immune responses in the respiratory system as well as bronchopulmonary dysplasia (BPD).

Purpose: To analyze the composition of the gut microbiota in very low birth weight infants with versus without BPD.

Methods: Secondary data from a previous randomized controlled trial were analyzed. Microbiomes were analyzed using QIIME 2 software. Gut microbiota diversity and abundance were compared between groups.

Results: Fifty-one neonates were classified into the BPD (n=24) and non-BPD (n=27) groups, between which no differences were noted in the alpha and beta diversities of the gut microbiota. In both groups, Proteobacteria, Gammaproteobacteria, and Klebsiella were the predominant phyla, class, and genus in gut microbiota, respectively. Enterococcus, Acinetobacter, Elizabethkingia, Clostridium sensu stricto 1, Bacteroides, Streptococcus, and Serratia were more abundant, whereas Klebsiella, Faecalibacterium, Escherichia-Shigella, Enterobacter, Bifidobacterium, Veillonella, Staphylococcus, and Enterobacteriaceae were less abundant in the BPD versus non-BPD group. Faecalibacterium, Roseburia, Clostridium, Eubacterium, and Coprococcus were significantly more abundant in the non-BPD versus BPD group.

Conclusion: The alpha and beta diversities of the gut microbiota did not differ significantly between the BPD and non-BPD groups. However, in terms of relative abundance, the presence of common respiratory pathogens was notable in the BPD group. Conversely, the non-BPD group had a significantly higher prevalence of anaerobic taxa known for their capacity to produce butyrate, a key component of postbiotics. Clinical Trial Registration: This trial was prospectively registered at Thai Clinical Trials (https://www.thaiclinicaltrials.org/export/pdf/TCTR20180306002; first posted registration: March 6, 2018).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.40%
发文量
88
审稿时长
60 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信