[Establishing of mortality predictive model for elderly critically ill patients using simple bedside indicators and interpretable machine learning algorithms].

Q3 Medicine
Yulan Meng, Jiaxin Li, Xinqiang Shan, Pengyu Lu, Wei Huang
{"title":"[Establishing of mortality predictive model for elderly critically ill patients using simple bedside indicators and interpretable machine learning algorithms].","authors":"Yulan Meng, Jiaxin Li, Xinqiang Shan, Pengyu Lu, Wei Huang","doi":"10.3760/cma.j.cn121430-20240729-00640","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the feasibility of incorporating simple bedside indicators into death predictive model for elderly critically ill patients based on interpretability machine learning algorithms, providing a new scheme for clinical disease assessment.</p><p><strong>Methods: </strong>Elderly critically ill patients aged ≥ 65 years who were hospitalized in the intensive care unit (ICU) of Tacheng People's Hospital of Ili Kazak Autonomous Prefecture from June 2017 to May 2020 were retrospectively selected. Basic parameters including demographic characteristics, basic vital signs and fluid intake and output within 24 hours after admission, as well acute physiology and chronic health evaluation II (APACHE II), Glasgow coma score (GCS) and sequential organ failure assessment (SOFA) were also collected. According to outcomes in hospital, patients were divided into survival group and death group. Four datasets were constructed respectively, namely baseline dataset (B), including age, body temperature, heart rate, pulse oxygen saturation, respiratory rate, mean arterial pressure, urine output volume, infusion volume, and crystal solution volume; B+APACHE II dataset (BA), B+GCS dataset (BG), and B+SOFA dataset (BS). Then three machine learning algorithms, Logistic regression (LR), extreme gradient boosting (XGboost) and gradient boosting decision tree (GBDT) were used to develop the corresponding mortality predictive models within four datasets. The feature importance histogram of each prediction model was drawn by SHapley additive explanation (SHAP) method. The area under curve (AUC), accuracy and F1 score of each model were compared to determine the optimal prediction model and then illuminate the nomogram.</p><p><strong>Results: </strong>A total of 392 patients were collected, including 341 in the survival group and 51 in the death group. There were statistically significant differences in heart rate, pulse oxygen saturation, mean arterial pressure, infusion volume, crystal solution volume, and etiological distribution between the two groups. The top three causes of death were shock, cerebral hemorrhage, and chronic obstructive pulmonary disease. Among the 12 prognostic models trained by three machine learning algorithms, overall performance of prognostic models based on B dataset was behind, whereas the LR model trained by BA dataset achieved the best performance than others with AUC of 0.767 [95% confidence interval (95%CI) was 0.692-0.836], accuracy of 0.875 (95%CI was 0.837-0.903) and F1 score of 0.190. The top 3 variables in this model were crystal solution volume with first 24 hours, heart rate and mean arterial pressure. The nomogram of the model showed that the total score between 150 and 230 were advisable.</p><p><strong>Conclusion: </strong>The interpretable machine learning model including simple bedside parameters combined with APACHE II score could effectively identify the risk of death in elderly patients with critically illness.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 2","pages":"170-176"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240729-00640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore the feasibility of incorporating simple bedside indicators into death predictive model for elderly critically ill patients based on interpretability machine learning algorithms, providing a new scheme for clinical disease assessment.

Methods: Elderly critically ill patients aged ≥ 65 years who were hospitalized in the intensive care unit (ICU) of Tacheng People's Hospital of Ili Kazak Autonomous Prefecture from June 2017 to May 2020 were retrospectively selected. Basic parameters including demographic characteristics, basic vital signs and fluid intake and output within 24 hours after admission, as well acute physiology and chronic health evaluation II (APACHE II), Glasgow coma score (GCS) and sequential organ failure assessment (SOFA) were also collected. According to outcomes in hospital, patients were divided into survival group and death group. Four datasets were constructed respectively, namely baseline dataset (B), including age, body temperature, heart rate, pulse oxygen saturation, respiratory rate, mean arterial pressure, urine output volume, infusion volume, and crystal solution volume; B+APACHE II dataset (BA), B+GCS dataset (BG), and B+SOFA dataset (BS). Then three machine learning algorithms, Logistic regression (LR), extreme gradient boosting (XGboost) and gradient boosting decision tree (GBDT) were used to develop the corresponding mortality predictive models within four datasets. The feature importance histogram of each prediction model was drawn by SHapley additive explanation (SHAP) method. The area under curve (AUC), accuracy and F1 score of each model were compared to determine the optimal prediction model and then illuminate the nomogram.

Results: A total of 392 patients were collected, including 341 in the survival group and 51 in the death group. There were statistically significant differences in heart rate, pulse oxygen saturation, mean arterial pressure, infusion volume, crystal solution volume, and etiological distribution between the two groups. The top three causes of death were shock, cerebral hemorrhage, and chronic obstructive pulmonary disease. Among the 12 prognostic models trained by three machine learning algorithms, overall performance of prognostic models based on B dataset was behind, whereas the LR model trained by BA dataset achieved the best performance than others with AUC of 0.767 [95% confidence interval (95%CI) was 0.692-0.836], accuracy of 0.875 (95%CI was 0.837-0.903) and F1 score of 0.190. The top 3 variables in this model were crystal solution volume with first 24 hours, heart rate and mean arterial pressure. The nomogram of the model showed that the total score between 150 and 230 were advisable.

Conclusion: The interpretable machine learning model including simple bedside parameters combined with APACHE II score could effectively identify the risk of death in elderly patients with critically illness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zhonghua wei zhong bing ji jiu yi xue
Zhonghua wei zhong bing ji jiu yi xue Medicine-Critical Care and Intensive Care Medicine
CiteScore
1.00
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信