Balancing accuracy and user satisfaction: the role of prompt engineering in AI-driven healthcare solutions.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1517918
Mini Han Wang, Xudong Jiang, Peijin Zeng, Xinyue Li, Kelvin Kam-Lung Chong, Guanghui Hou, Xiaoxiao Fang, Yang Yu, Xiangrong Yu, Junbin Fang, Yi Pan
{"title":"Balancing accuracy and user satisfaction: the role of prompt engineering in AI-driven healthcare solutions.","authors":"Mini Han Wang, Xudong Jiang, Peijin Zeng, Xinyue Li, Kelvin Kam-Lung Chong, Guanghui Hou, Xiaoxiao Fang, Yang Yu, Xiangrong Yu, Junbin Fang, Yi Pan","doi":"10.3389/frai.2025.1517918","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rapid evolution of the Internet of Things (IoT) and Artificial Intelligence (AI) has opened new possibilities for public healthcare. Effective integration of these technologies is essential to ensure precise and efficient healthcare delivery. This study explores the application of IoT-enabled, AI-driven systems for detecting and managing Dry Eye Disease (DED), emphasizing the use of prompt engineering to enhance system performance.</p><p><strong>Methods: </strong>A specialized prompt mechanism was developed utilizing OpenAI GPT-4.0 and ERNIE Bot-4.0 APIs to assess the urgency of medical attention based on 5,747 simulated patient complaints. A Bidirectional Encoder Representations from Transformers (BERT) machine learning model was employed for text classification to differentiate urgent from non-urgent cases. User satisfaction was evaluated through composite scores derived from Service Experiences (SE) and Medical Quality (MQ) assessments.</p><p><strong>Results: </strong>The comparison between prompted and non-prompted queries revealed a significant accuracy increase from 80.1% to 99.6%. However, this improvement was accompanied by a notable rise in response time, resulting in a decrease in SE scores (95.5 to 84.7) but a substantial increase in MQ satisfaction (73.4 to 96.7). These findings indicate a trade-off between accuracy and user satisfaction.</p><p><strong>Discussion: </strong>The study highlights the critical role of prompt engineering in improving AI-based healthcare services. While enhanced accuracy is achievable, careful attention must be given to balancing response time and user satisfaction. Future research should optimize prompt structures, explore dynamic prompting approaches, and prioritize real-time evaluations to address the identified challenges and maximize the potential of IoT-integrated AI systems in medical applications.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1517918"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1517918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The rapid evolution of the Internet of Things (IoT) and Artificial Intelligence (AI) has opened new possibilities for public healthcare. Effective integration of these technologies is essential to ensure precise and efficient healthcare delivery. This study explores the application of IoT-enabled, AI-driven systems for detecting and managing Dry Eye Disease (DED), emphasizing the use of prompt engineering to enhance system performance.

Methods: A specialized prompt mechanism was developed utilizing OpenAI GPT-4.0 and ERNIE Bot-4.0 APIs to assess the urgency of medical attention based on 5,747 simulated patient complaints. A Bidirectional Encoder Representations from Transformers (BERT) machine learning model was employed for text classification to differentiate urgent from non-urgent cases. User satisfaction was evaluated through composite scores derived from Service Experiences (SE) and Medical Quality (MQ) assessments.

Results: The comparison between prompted and non-prompted queries revealed a significant accuracy increase from 80.1% to 99.6%. However, this improvement was accompanied by a notable rise in response time, resulting in a decrease in SE scores (95.5 to 84.7) but a substantial increase in MQ satisfaction (73.4 to 96.7). These findings indicate a trade-off between accuracy and user satisfaction.

Discussion: The study highlights the critical role of prompt engineering in improving AI-based healthcare services. While enhanced accuracy is achievable, careful attention must be given to balancing response time and user satisfaction. Future research should optimize prompt structures, explore dynamic prompting approaches, and prioritize real-time evaluations to address the identified challenges and maximize the potential of IoT-integrated AI systems in medical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信