Bed sensor ballistocardiogram for non-invasive detection of atrial fibrillation: a comprehensive clinical study.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Jonas Sandelin, O Lahdenoja, I Elnaggar, R Rekola, A Anzanpour, S Seifizarei, M Kaisti, T Koivisto, J Lehto, J Nuotio, J Jaakkola, A Relander, T Vasankari, J Airaksinen, T Kiviniemi
{"title":"Bed sensor ballistocardiogram for non-invasive detection of atrial fibrillation: a comprehensive clinical study.","authors":"Jonas Sandelin, O Lahdenoja, I Elnaggar, R Rekola, A Anzanpour, S Seifizarei, M Kaisti, T Koivisto, J Lehto, J Nuotio, J Jaakkola, A Relander, T Vasankari, J Airaksinen, T Kiviniemi","doi":"10.1088/1361-6579/adbb52","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Atrial fibrillation (AFib) is a common cardiac arrhythmia associated with high morbidity and mortality, making early detection and continuous monitoring essential to prevent complications like stroke. This study explores the potential of using a ballistocardiogram (BCG) based bed sensor for the detection of AFib.<i>Approach.</i>We conducted a comprehensive clinical study with night hospital recordings from 116 patients, divided into 72 training and 44 test subjects. The study employs established methods such as autocorrelation to identify AFib from BCG signals. Spot and continuous Holter ECG were used as reference methods for AFib detection against which BCG rhythm classifications were compared.<i>Results.</i>Our findings demonstrate the potential of BCG-based AFib detection, achieving 94% accuracy on the training set using a rule-based method. Furthermore, the machine learning model trained with the training set achieved an AUROC score of 97% on the test set.<i>Significance.</i>This innovative approach shows promise for accurate, non-invasive, and continuous monitoring of AFib, contributing to improved patient care and outcomes, particularly in the context of home-based or hospital settings.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adbb52","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Atrial fibrillation (AFib) is a common cardiac arrhythmia associated with high morbidity and mortality, making early detection and continuous monitoring essential to prevent complications like stroke. This study explores the potential of using a ballistocardiogram (BCG) based bed sensor for the detection of AFib.Approach.We conducted a comprehensive clinical study with night hospital recordings from 116 patients, divided into 72 training and 44 test subjects. The study employs established methods such as autocorrelation to identify AFib from BCG signals. Spot and continuous Holter ECG were used as reference methods for AFib detection against which BCG rhythm classifications were compared.Results.Our findings demonstrate the potential of BCG-based AFib detection, achieving 94% accuracy on the training set using a rule-based method. Furthermore, the machine learning model trained with the training set achieved an AUROC score of 97% on the test set.Significance.This innovative approach shows promise for accurate, non-invasive, and continuous monitoring of AFib, contributing to improved patient care and outcomes, particularly in the context of home-based or hospital settings.

床上传感器心电图无创检测心房颤动的综合临床研究。
心房颤动(AFib)是一种常见的心律失常,具有显著的发病率和死亡率。AFib的早期发现和持续监测对于预防中风等并发症至关重要。在本文中,我们 ;通过对116例患者(分为72名训练组和44名测试组)夜间医院记录 ;的综合临床研究,探索使用基于BCG的床上传感器检测 ;AFib的潜力。本研究采用自相关等已建立的方法从bcg信号中检测AFib。我们将定点和连续动态心电图作为检测AFib的参考方法,并将其与BCG节律分类进行比较。我们的研究结果表明,这种创新的方法有望实现AFib的准确和无创连续监测。通过完整的夜间记录,我们能够使用基于规则的方法使用训练集以94%的准确率检测AFib,并使用使用训练集训练的机器学习模型获得97%的AUROC分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信