KLF4 regulates FAM3A to promotes angiotensin II-induced proliferation and migration of vascular smooth muscle cells through the PI3K/AKT signaling pathway

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Min Zhang, Rong Lei, Liqiong Wang, Yimin Jiang, Xiaoyan Zhou, Yuquan Wang
{"title":"KLF4 regulates FAM3A to promotes angiotensin II-induced proliferation and migration of vascular smooth muscle cells through the PI3K/AKT signaling pathway","authors":"Min Zhang,&nbsp;Rong Lei,&nbsp;Liqiong Wang,&nbsp;Yimin Jiang,&nbsp;Xiaoyan Zhou,&nbsp;Yuquan Wang","doi":"10.1016/j.peptides.2025.171379","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Hypertension, a major cause of cardiovascular disease, is linked to vascular remodeling, which is influenced by phenotypic changes in vascular smooth muscle cells (VSMCs). Studies have shown that KLF4 influences vascular remodeling by promoting VSMC dedifferentiation, increasing proliferation, and enhancing inflammatory responses, while FAM3 may play a key role in VSMC migration and proliferation. Angiotensin II (Ang II) contributes to remodeling, but the mechanisms are unclear.</div></div><div><h3>Methods</h3><div>Ang II was used to stimulate VSMCs in order to evaluate the expression levels of KLF4 and FAM3A. EdU assays, transwell and scratch wound healing assays measured proliferation and migration. KLF4 knockdown and overexpression experiments were performed to examine the effects on FAM3A expression and VSMC behavior. Western blotting was conducted to analyze protein expression levels of KLF4, FAM3A, and PI3K/AKT signaling components. Bioinformatics analysis was used to predict KLF4 binding sites on the FAM3A promoter. Luciferase and CHIP assays confirmed regulation.</div></div><div><h3>Results</h3><div>Ang II stimulation increased VSMC proliferation, migration, and the expression of KLF4 and FAM3A. Knockdown of KLF4 reduced Ang II-induced proliferation and migration of VSMCs, accompanied by decreased FAM3A expression. Conversely, overexpression of KLF4 enhanced FAM3A levels, promoting VSMC proliferation and migration. Bioinformatics, luciferase reporter assays and CHIP assay confirmed that KLF4 directly binds to the FAM3A promoter. FAM3A knockdown inhibited Ang II-induced VSMC proliferation and migration by reducing PI3K/AKT pathway activation, whereas FAM3A overexpression reversed the inhibitory effects of KLF4 knockdown.</div></div><div><h3>Conclusion</h3><div>KLF4 transcriptionally regulates FAM3A, modulating Ang II-induced VSMC proliferation and migration through the PI3K/AKT signaling pathway.</div></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"187 ","pages":"Article 171379"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978125000403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Hypertension, a major cause of cardiovascular disease, is linked to vascular remodeling, which is influenced by phenotypic changes in vascular smooth muscle cells (VSMCs). Studies have shown that KLF4 influences vascular remodeling by promoting VSMC dedifferentiation, increasing proliferation, and enhancing inflammatory responses, while FAM3 may play a key role in VSMC migration and proliferation. Angiotensin II (Ang II) contributes to remodeling, but the mechanisms are unclear.

Methods

Ang II was used to stimulate VSMCs in order to evaluate the expression levels of KLF4 and FAM3A. EdU assays, transwell and scratch wound healing assays measured proliferation and migration. KLF4 knockdown and overexpression experiments were performed to examine the effects on FAM3A expression and VSMC behavior. Western blotting was conducted to analyze protein expression levels of KLF4, FAM3A, and PI3K/AKT signaling components. Bioinformatics analysis was used to predict KLF4 binding sites on the FAM3A promoter. Luciferase and CHIP assays confirmed regulation.

Results

Ang II stimulation increased VSMC proliferation, migration, and the expression of KLF4 and FAM3A. Knockdown of KLF4 reduced Ang II-induced proliferation and migration of VSMCs, accompanied by decreased FAM3A expression. Conversely, overexpression of KLF4 enhanced FAM3A levels, promoting VSMC proliferation and migration. Bioinformatics, luciferase reporter assays and CHIP assay confirmed that KLF4 directly binds to the FAM3A promoter. FAM3A knockdown inhibited Ang II-induced VSMC proliferation and migration by reducing PI3K/AKT pathway activation, whereas FAM3A overexpression reversed the inhibitory effects of KLF4 knockdown.

Conclusion

KLF4 transcriptionally regulates FAM3A, modulating Ang II-induced VSMC proliferation and migration through the PI3K/AKT signaling pathway.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Peptides
Peptides 医学-生化与分子生物学
CiteScore
6.40
自引率
6.70%
发文量
130
审稿时长
28 days
期刊介绍: Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects. Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信