Inhibition of liver cancer cell growth by metabolites S-adenosylmethionine and nicotinic acid originating from liver progenitor cells.

IF 6.9 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Wen-Ming Liu, Cai-Yang Chen, Hong-Qian Ma, Qiu-Qiu Zhang, Xu Zhou, Yu-Ling Wu, Wei-Jian Huang, Xiao-Shu Qi, Yu-Xin Zhang, Dan Tang, Han-Yong Sun, Hong-Ping Wu, Ying-Fu Jiao, Zhi-Ying He, Wei-Feng Yu, He-Xin Yan
{"title":"Inhibition of liver cancer cell growth by metabolites S-adenosylmethionine and nicotinic acid originating from liver progenitor cells.","authors":"Wen-Ming Liu, Cai-Yang Chen, Hong-Qian Ma, Qiu-Qiu Zhang, Xu Zhou, Yu-Ling Wu, Wei-Jian Huang, Xiao-Shu Qi, Yu-Xin Zhang, Dan Tang, Han-Yong Sun, Hong-Ping Wu, Ying-Fu Jiao, Zhi-Ying He, Wei-Feng Yu, He-Xin Yan","doi":"10.1007/s00535-025-02226-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC), the most common form of liver cancer, presents a challenging malignancy with scarce treatment options. Liver progenitor cells (LPCs) play a pivotal role in both liver regeneration and the progression of liver cancer, yet the specific functions of LPCs from different origins in liver cancer remain to be fully elucidated.</p><p><strong>Methods: </strong>We explored the liver progenitor-like cells derived from human hepatocytes (HepLPCs) on the proliferation of HCC both in vitro and in vivo. The mitochondrial function was assessed through electron microscopy and functional experiments. Transcriptomic sequencing and western blot unveiled the fundamental mechanisms at play, whereas metabolomic sequencing pinpointed crucial effector molecules involved in the paracrine secretion of HepLPCs.</p><p><strong>Results: </strong>By employing a co-culture system of HepLPCs and HCC cells, we found that HepLPCs markedly inhibited HCC growth by prompting mitochondrial dysfunction, which further led to the co-inhibition of the Notch1 and JAK1/STAT3 signaling pathways through paracrine actions involving S-adenosylmethionine (SAM) and Nicotinic acid (NA).</p><p><strong>Conclusions: </strong>This study has uncovered that HepLPCs have a suppressive influence on the proliferation of HCC cells. This is achieved through the impairment of mitochondrial function and the inhibition of key signaling pathways, namely, Notch1 and JAK1/STAT3, which are critical drivers of cancer progression. The secretion of the metabolites SAM and NA by HepLPCs appears to be instrumental in mediating these effects. These findings provide a solid foundation for identifying new therapeutic targets and clarifying the mechanisms through which HepLPCs can be harnessed to effectively treat HCC.</p>","PeriodicalId":16059,"journal":{"name":"Journal of Gastroenterology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00535-025-02226-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, presents a challenging malignancy with scarce treatment options. Liver progenitor cells (LPCs) play a pivotal role in both liver regeneration and the progression of liver cancer, yet the specific functions of LPCs from different origins in liver cancer remain to be fully elucidated.

Methods: We explored the liver progenitor-like cells derived from human hepatocytes (HepLPCs) on the proliferation of HCC both in vitro and in vivo. The mitochondrial function was assessed through electron microscopy and functional experiments. Transcriptomic sequencing and western blot unveiled the fundamental mechanisms at play, whereas metabolomic sequencing pinpointed crucial effector molecules involved in the paracrine secretion of HepLPCs.

Results: By employing a co-culture system of HepLPCs and HCC cells, we found that HepLPCs markedly inhibited HCC growth by prompting mitochondrial dysfunction, which further led to the co-inhibition of the Notch1 and JAK1/STAT3 signaling pathways through paracrine actions involving S-adenosylmethionine (SAM) and Nicotinic acid (NA).

Conclusions: This study has uncovered that HepLPCs have a suppressive influence on the proliferation of HCC cells. This is achieved through the impairment of mitochondrial function and the inhibition of key signaling pathways, namely, Notch1 and JAK1/STAT3, which are critical drivers of cancer progression. The secretion of the metabolites SAM and NA by HepLPCs appears to be instrumental in mediating these effects. These findings provide a solid foundation for identifying new therapeutic targets and clarifying the mechanisms through which HepLPCs can be harnessed to effectively treat HCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Gastroenterology
Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
12.20
自引率
1.60%
发文量
99
审稿时长
4-8 weeks
期刊介绍: The Journal of Gastroenterology, which is the official publication of the Japanese Society of Gastroenterology, publishes Original Articles (Alimentary Tract/Liver, Pancreas, and Biliary Tract), Review Articles, Letters to the Editors and other articles on all aspects of the field of gastroenterology. Significant contributions relating to basic research, theory, and practice are welcomed. These publications are designed to disseminate knowledge in this field to a worldwide audience, and accordingly, its editorial board has an international membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信