TET-mediated 5hmC in breast cancer: mechanism and clinical potential.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-02-27 DOI:10.1080/15592294.2025.2473250
Jiahang Zhang, Nadire Aishan, Zhongqiu Zheng, Siwei Ju, Qina He, Qingna Meng, Xixi Lin, Jiaheng Lang, Jichun Zhou, Yongxia Chen, Bojian Xie, Yangjun Cai, Feiyang Ji, Linbo Wang
{"title":"TET-mediated 5hmC in breast cancer: mechanism and clinical potential.","authors":"Jiahang Zhang, Nadire Aishan, Zhongqiu Zheng, Siwei Ju, Qina He, Qingna Meng, Xixi Lin, Jiaheng Lang, Jichun Zhou, Yongxia Chen, Bojian Xie, Yangjun Cai, Feiyang Ji, Linbo Wang","doi":"10.1080/15592294.2025.2473250","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2473250"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2473250","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.

乳腺癌是女性最常见的癌症,由于其分子亚型不同,临床特征也不尽相同。目前的研究表明,表观遗传修饰在调控乳腺癌的进展中起着至关重要的作用。在这些机制中,DNA 去甲基化及其逆过程在激活或沉默癌症相关基因表达方面的作用已被广泛研究。具体来说,十-十一转位(TET)酶参与了从 5-甲基胞嘧啶(5mC)到 5-羟甲基胞嘧啶(5hmC)的转化过程,这导致乳腺癌中 5hmC 的总体水平与正常组织相比存在显著差异。在这篇综述中,我们总结了 TET 蛋白的功能以及 5hmC 水平在乳腺癌发病机制中的调节作用。文中还讨论了 5hmC 在早期诊断和预后预测中的临床价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信