Hao Zou , Fei Hu , Xin Wu , Bin Xu , Guifeng Shang , Dong An , Dehao Qin , Xiaolei Zhang , Aofei Yang
{"title":"A m6A writer RBM15 enhances the cell malignancy of osteosarcoma by mediating m6A modification of lncRNA THAP9-AS1","authors":"Hao Zou , Fei Hu , Xin Wu , Bin Xu , Guifeng Shang , Dong An , Dehao Qin , Xiaolei Zhang , Aofei Yang","doi":"10.1016/j.yexcr.2025.114490","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Osteosarcoma (OS) remains a potentially fatal disease in children. Increasing evidence highlights the implication of lncRNAs and N6-methyladenosine (m6A) modification in OS malignancies. Here, we aimed to decipher the pathological significance of RBM15-mediated m6A modification of lncRNA THAP9-AS1 in OS progression.</div></div><div><h3>Methods</h3><div>The expression levels of THAP9-AS1 and RBM15 in OS tissues and cell lines was determined by qRT-PCR. Based on the abnormal regulation of THAP9-AS1 and RBM15, the CCK8, colony-formation, and transwell invasion assays were used to evaluate the viability, clone formation capacity, and invasive ability of OS cells. A mouse model of tumor transplantation was utilized to ascertain the role of THAP9-AS1 silencing <em>in vivo</em>. The relationship between THAP9-AS1 and RBM15 was determined by RIP and MeRIP assays.</div></div><div><h3>Results</h3><div>THAP9-AS1 and RBM15 were significantly elevated in OS. Silencing of THAP9-AS1 or RBM15 decreased the proliferative and invasive ability of OS cells <em>in vitro</em>, and inhibition of THAP9-AS1 delayed the tumorous growth <em>in vivo</em>. Interestingly, THAP9-AS1 binds to RBM15, and was stimulated by RBM15 to promote m6A level and translation. Furthermore, THAP9-AS1 upregulation promoted OS cell invasion and survival, and this promotion of OS cell malignancy was abrogated by RBM15 silencing.</div></div><div><h3>Conclusion</h3><div>THAP9-AS1 serves as a tumor promoter by accelerating the malignant progression of OS by undergoing m6A modification, which is mediated by RBM15. This suggests that RBM15-m6A-THAP9-AS1 may be a potential target for OS treatment.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"447 1","pages":"Article 114490"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000862","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Osteosarcoma (OS) remains a potentially fatal disease in children. Increasing evidence highlights the implication of lncRNAs and N6-methyladenosine (m6A) modification in OS malignancies. Here, we aimed to decipher the pathological significance of RBM15-mediated m6A modification of lncRNA THAP9-AS1 in OS progression.
Methods
The expression levels of THAP9-AS1 and RBM15 in OS tissues and cell lines was determined by qRT-PCR. Based on the abnormal regulation of THAP9-AS1 and RBM15, the CCK8, colony-formation, and transwell invasion assays were used to evaluate the viability, clone formation capacity, and invasive ability of OS cells. A mouse model of tumor transplantation was utilized to ascertain the role of THAP9-AS1 silencing in vivo. The relationship between THAP9-AS1 and RBM15 was determined by RIP and MeRIP assays.
Results
THAP9-AS1 and RBM15 were significantly elevated in OS. Silencing of THAP9-AS1 or RBM15 decreased the proliferative and invasive ability of OS cells in vitro, and inhibition of THAP9-AS1 delayed the tumorous growth in vivo. Interestingly, THAP9-AS1 binds to RBM15, and was stimulated by RBM15 to promote m6A level and translation. Furthermore, THAP9-AS1 upregulation promoted OS cell invasion and survival, and this promotion of OS cell malignancy was abrogated by RBM15 silencing.
Conclusion
THAP9-AS1 serves as a tumor promoter by accelerating the malignant progression of OS by undergoing m6A modification, which is mediated by RBM15. This suggests that RBM15-m6A-THAP9-AS1 may be a potential target for OS treatment.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.