Junchen Pan , Rui Liu , Wenhua Lu , Hongyu Peng , Jing Yang , Qianrui Zhang , Tiantian Yu , Bitao Huo , Xiaoying Wei , Haixi Liang , Lin Zhou , Yameng Sun , Yumin Hu , Shijun Wen , Jie Fu , Paul J. Chiao , Xiaojun Xia , Jinyun Liu , Peng Huang
{"title":"SQLE-catalyzed squalene metabolism promotes mitochondrial biogenesis and tumor development in K-ras-driven cancer","authors":"Junchen Pan , Rui Liu , Wenhua Lu , Hongyu Peng , Jing Yang , Qianrui Zhang , Tiantian Yu , Bitao Huo , Xiaoying Wei , Haixi Liang , Lin Zhou , Yameng Sun , Yumin Hu , Shijun Wen , Jie Fu , Paul J. Chiao , Xiaojun Xia , Jinyun Liu , Peng Huang","doi":"10.1016/j.canlet.2025.217586","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that activation of oncogenic K-ras alone is insufficient to drive tumor development and that additional factors are needed for full malignant transformation, but the metabolic pathways and regulatory mechanisms that facilitate K-ras-driven cancer development remain to be characterized. Here we show that SQLE, a key enzyme in cholesterol synthesis, is upregulated in K-ras-driven cancer and its high expression is correlated with poor clinical outcome. K-ras regulates SQLE expression in a biphasic manner through reactive oxygen species and MYC signaling. Surprisingly, the pro-oncogenic role of SQLE is not mediated by promoting cholesterol synthesis, but by metabolic removal of squalene and thus mitigating its suppressive effect on the PGC-1α-mediated mitochondrial biogenesis and metabolism. Genetic silencing of SQLE in pancreatic cancer cells causes an accumulation of cellular squalene, which binds to Sp1 protein and causes a formation of a tight Sp1-TFAP2E promoter DNA complex with a highly negative binding score. This aberrant squalene/Sp1/TFAP2E promoter complex hinders the expression of TFAP2E and its downstream molecule PGC-1α, leading to suppression of mitochondrial metabolism and an almost complete inhibition of tumor formation <em>in vivo</em>. Importantly, administration of pharmacological squalene to mice bearing pancreatic cancer xenografts could significantly inhibit tumor growth. Our study has revealed a previously unrecognized role of SQLE in regulating gene expression and mitochondrial metabolism to facilitate K-ras-driven cancer development, and identified SQLE as a novel therapeutic target for potential treatment of pancreatic cancer.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"616 ","pages":"Article 217586"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001508","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that activation of oncogenic K-ras alone is insufficient to drive tumor development and that additional factors are needed for full malignant transformation, but the metabolic pathways and regulatory mechanisms that facilitate K-ras-driven cancer development remain to be characterized. Here we show that SQLE, a key enzyme in cholesterol synthesis, is upregulated in K-ras-driven cancer and its high expression is correlated with poor clinical outcome. K-ras regulates SQLE expression in a biphasic manner through reactive oxygen species and MYC signaling. Surprisingly, the pro-oncogenic role of SQLE is not mediated by promoting cholesterol synthesis, but by metabolic removal of squalene and thus mitigating its suppressive effect on the PGC-1α-mediated mitochondrial biogenesis and metabolism. Genetic silencing of SQLE in pancreatic cancer cells causes an accumulation of cellular squalene, which binds to Sp1 protein and causes a formation of a tight Sp1-TFAP2E promoter DNA complex with a highly negative binding score. This aberrant squalene/Sp1/TFAP2E promoter complex hinders the expression of TFAP2E and its downstream molecule PGC-1α, leading to suppression of mitochondrial metabolism and an almost complete inhibition of tumor formation in vivo. Importantly, administration of pharmacological squalene to mice bearing pancreatic cancer xenografts could significantly inhibit tumor growth. Our study has revealed a previously unrecognized role of SQLE in regulating gene expression and mitochondrial metabolism to facilitate K-ras-driven cancer development, and identified SQLE as a novel therapeutic target for potential treatment of pancreatic cancer.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.