Validation of target-enriched enzymatic methylation sequencing for brain tumor classification from formalin-fixed paraffin embedded-derived DNA.

IF 5.8 2区 医学 Q1 CLINICAL NEUROLOGY
Brain Pathology Pub Date : 2025-02-28 DOI:10.1111/bpa.70000
Quynh T Tran, Sujuan Jia, Md Zahangir Alom, Lu Wang, Charles G Mullighan, Ruth G Tatevossian, Brent A Orr
{"title":"Validation of target-enriched enzymatic methylation sequencing for brain tumor classification from formalin-fixed paraffin embedded-derived DNA.","authors":"Quynh T Tran, Sujuan Jia, Md Zahangir Alom, Lu Wang, Charles G Mullighan, Ruth G Tatevossian, Brent A Orr","doi":"10.1111/bpa.70000","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation profiling by Illumina methylation array-based methods has revolutionized the molecular classification and diagnosis of brain tumors. A significant barrier to adopting these methods in a clinical environment is the requirement for specialized scanners, which results in high additional costs and a larger laboratory footprint. DNA sequencing-based alternatives are attractive because most clinical molecular pathology laboratories already use sequencers for other molecular assays. This study aimed to compare the utility of the newly developed sequencing-based enzymatic methyl sequencing (EM-seq) method paired with the Twist Human Methylome panel for brain tumor classification with standard Infinium Methylation BeadChip-based methods. We used DNA from fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) brain cancer samples from 19 patients and 1 control sample to construct DNA libraries covering 3.98 million CpG sites. We developed and validated a bioinformatics pipeline to analyze target-enriched EM-seq (TEEM-seq) data in comparison with standard array-based methods for tumor classification and copy number profiling. We found high concordance between TEEM-seq and traditional methods, with high correlation coefficients (>0.98) between FFPE replicates. We successfully classified tumor samples into the expected molecular classes with robust prediction scores (>0.82). We observed that FFPE samples required a sequencing depth of at least 35x to achieve consistently high and reliable prediction scores. The TEEM-seq method has the potential to complement existing tumor classification methods and lower the barriers for the adoption of methylation profiling in routine clinical use.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":" ","pages":"e70000"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bpa.70000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation profiling by Illumina methylation array-based methods has revolutionized the molecular classification and diagnosis of brain tumors. A significant barrier to adopting these methods in a clinical environment is the requirement for specialized scanners, which results in high additional costs and a larger laboratory footprint. DNA sequencing-based alternatives are attractive because most clinical molecular pathology laboratories already use sequencers for other molecular assays. This study aimed to compare the utility of the newly developed sequencing-based enzymatic methyl sequencing (EM-seq) method paired with the Twist Human Methylome panel for brain tumor classification with standard Infinium Methylation BeadChip-based methods. We used DNA from fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) brain cancer samples from 19 patients and 1 control sample to construct DNA libraries covering 3.98 million CpG sites. We developed and validated a bioinformatics pipeline to analyze target-enriched EM-seq (TEEM-seq) data in comparison with standard array-based methods for tumor classification and copy number profiling. We found high concordance between TEEM-seq and traditional methods, with high correlation coefficients (>0.98) between FFPE replicates. We successfully classified tumor samples into the expected molecular classes with robust prediction scores (>0.82). We observed that FFPE samples required a sequencing depth of at least 35x to achieve consistently high and reliable prediction scores. The TEEM-seq method has the potential to complement existing tumor classification methods and lower the barriers for the adoption of methylation profiling in routine clinical use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Pathology
Brain Pathology 医学-病理学
CiteScore
13.20
自引率
3.10%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信