Johannes Hengelbrock, Frank Konietschke, Juliane Herm, Heinrich Audebert, Annette Aigner
{"title":"Assessing non-inferiority for binary matched-pairs data with missing values: a powerful and flexible GEE approach based on the risk difference.","authors":"Johannes Hengelbrock, Frank Konietschke, Juliane Herm, Heinrich Audebert, Annette Aigner","doi":"10.1186/s12874-025-02497-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clinical studies often aim to test the non-inferiority of a treatment compared to an alternative intervention with binary matched-pairs data. These studies are often planned with methods for completely observed pairs only. However, if missingness is more frequent than expected or is anticipated in the planning phase, methods are needed that allow the inclusion of partially observed pairs to improve statistical power.</p><p><strong>Methods: </strong>We propose a flexible generalized estimating equations (GEE) approach to estimate confidence intervals for the risk difference, which accommodates partially observed pairs. Using simulated data, we compare this approach to alternative methods for completely observed pairs only and to those that also include pairs with missing observations. Additionally, we reconsider the study sample size calculation by applying these methods to a study with binary matched-pairs setting.</p><p><strong>Results: </strong>In moderate to large sample sizes, the proposed GEE approach performs similarly to alternative methods for completely observed pairs only. It even results in a higher power and narrower interval widths in scenarios with missing data and where missingness follows a missing (completely) at random (MCAR / MAR) mechanism. The GEE approach is also non-inferior to alternative methods, such as multiple imputation or confidence intervals explicitly developed for missing data settings. Reconsidering the sample size calculation for an observational study, our proposed approach leads to a considerably smaller sample size than the alternative methods.</p><p><strong>Conclusion: </strong>Our results indicate that the proposed GEE approach is a powerful alternative to existing methods and can be used for testing non-inferiority, even if the initial sample size calculation was based on a different statistical method. Furthermore, it increases the analytical flexibility by allowing the inclusion of additional covariates, in contrast to other methods.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"53"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02497-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Clinical studies often aim to test the non-inferiority of a treatment compared to an alternative intervention with binary matched-pairs data. These studies are often planned with methods for completely observed pairs only. However, if missingness is more frequent than expected or is anticipated in the planning phase, methods are needed that allow the inclusion of partially observed pairs to improve statistical power.
Methods: We propose a flexible generalized estimating equations (GEE) approach to estimate confidence intervals for the risk difference, which accommodates partially observed pairs. Using simulated data, we compare this approach to alternative methods for completely observed pairs only and to those that also include pairs with missing observations. Additionally, we reconsider the study sample size calculation by applying these methods to a study with binary matched-pairs setting.
Results: In moderate to large sample sizes, the proposed GEE approach performs similarly to alternative methods for completely observed pairs only. It even results in a higher power and narrower interval widths in scenarios with missing data and where missingness follows a missing (completely) at random (MCAR / MAR) mechanism. The GEE approach is also non-inferior to alternative methods, such as multiple imputation or confidence intervals explicitly developed for missing data settings. Reconsidering the sample size calculation for an observational study, our proposed approach leads to a considerably smaller sample size than the alternative methods.
Conclusion: Our results indicate that the proposed GEE approach is a powerful alternative to existing methods and can be used for testing non-inferiority, even if the initial sample size calculation was based on a different statistical method. Furthermore, it increases the analytical flexibility by allowing the inclusion of additional covariates, in contrast to other methods.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.