{"title":"FNDC5/Irisin exacerbates APAP-induced acute liver injury through activating JNK/NF-κB and inflammatory response.","authors":"Qian-Hui Zhang, Lei-Ming Jin, Meng-Sha Lin, Min-Xiu Wang, Ya-Qian Cui, Jia-Xi Ye, Yong-Qiang Xiong, Wu Luo, Wei-Wei Zhu, Guang Liang","doi":"10.1038/s41401-025-01509-7","DOIUrl":null,"url":null,"abstract":"<p><p>Acute liver injury (ALI) is associated with high mortality rates. Despite its severity, there are currently no effective interventions, underscoring the urgent need for research on the mechanisms driving ALI progression. Irisin, a hormone derived from its precursor FNDC5, has been shown to play a critical role in some chronic liver diseases. In this study we investigated the role of hepatic FNDC5/Irisin in a mouse model of AILI induced by acetaminophen (APAP, 400 mg/kg, i.p.). The mice were euthanized at 6, 12 and 24 h after APAP injection, then the blood and liver tissues were collected for analyses. By conducting transcriptome sequencing, we identified that both the expression and release of FNDC5/Irisin were significantly increased and highly correlated with AILI. We showed that knockout of Irisin significantly improved APAP-induced tissue damage and hepatocyte death in mouse liver. Conversely, preinjection of recombinant Irisin protein (1 mg·kg<sup>-1</sup>·d<sup>-</sup><sup>1</sup>, i.p., for 3 days) exacerbated the AILI in FNDC5 knockout mice. RNA-seq analysis revealed that knockout of FNDC5/Irisin reduced inflammatory responses and JNK/NF-κB activation in APAP-treated mouse liver, while exogenous Irisin administration aggravated JNK/NF-κB-mediated inflammation. In primary mouse hepatocytes treated with APAP (15 mM), application of Irisin (100 ng/mL) activated the integrin αV/JNK/NF-κB axis, driving inflammation and oxidative stress. In summary, this study highlights Irisin as a critical regulator in AILI progression. Circulating Irisin could be a novel biomarker for AILI diagnosis, and targeting FNDC5/Irisin could hold promise for the development of novel treatments for AILI.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1946-1957"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01509-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute liver injury (ALI) is associated with high mortality rates. Despite its severity, there are currently no effective interventions, underscoring the urgent need for research on the mechanisms driving ALI progression. Irisin, a hormone derived from its precursor FNDC5, has been shown to play a critical role in some chronic liver diseases. In this study we investigated the role of hepatic FNDC5/Irisin in a mouse model of AILI induced by acetaminophen (APAP, 400 mg/kg, i.p.). The mice were euthanized at 6, 12 and 24 h after APAP injection, then the blood and liver tissues were collected for analyses. By conducting transcriptome sequencing, we identified that both the expression and release of FNDC5/Irisin were significantly increased and highly correlated with AILI. We showed that knockout of Irisin significantly improved APAP-induced tissue damage and hepatocyte death in mouse liver. Conversely, preinjection of recombinant Irisin protein (1 mg·kg-1·d-1, i.p., for 3 days) exacerbated the AILI in FNDC5 knockout mice. RNA-seq analysis revealed that knockout of FNDC5/Irisin reduced inflammatory responses and JNK/NF-κB activation in APAP-treated mouse liver, while exogenous Irisin administration aggravated JNK/NF-κB-mediated inflammation. In primary mouse hepatocytes treated with APAP (15 mM), application of Irisin (100 ng/mL) activated the integrin αV/JNK/NF-κB axis, driving inflammation and oxidative stress. In summary, this study highlights Irisin as a critical regulator in AILI progression. Circulating Irisin could be a novel biomarker for AILI diagnosis, and targeting FNDC5/Irisin could hold promise for the development of novel treatments for AILI.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.