Development of an artificial intelligence-based multimodal diagnostic system for early detection of biliary atresia.

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Ya Ma, Yuancheng Yang, Yuxin Du, Luyang Jin, Baoyu Liang, Yuqi Zhang, Yedi Wang, Luyu Liu, Zijian Zhang, Zelong Jin, Zhimin Qiu, Mao Ye, Zhengrong Wang, Chao Tong
{"title":"Development of an artificial intelligence-based multimodal diagnostic system for early detection of biliary atresia.","authors":"Ya Ma, Yuancheng Yang, Yuxin Du, Luyang Jin, Baoyu Liang, Yuqi Zhang, Yedi Wang, Luyu Liu, Zijian Zhang, Zelong Jin, Zhimin Qiu, Mao Ye, Zhengrong Wang, Chao Tong","doi":"10.1186/s12916-025-03962-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early diagnosis of biliary atresia (BA) is crucial for improving patient outcomes, yet remains a significant global challenge. This challenge may be ameliorated through the application of artificial intelligence (AI). Despite the promise of AI in medical diagnostics, its application to multimodal BA data has not yet achieved substantial breakthroughs. This study aims to leverage diverse data sources and formats to develop an intelligent diagnostic system for BA.</p><p><strong>Methods: </strong>We constructed the largest known multimodal BA dataset, comprising ultrasound images, clinical data, and laboratory results. Using this dataset, we developed a novel deep learning model and simplified it using easily obtainable data, eliminating the need for blood samples. The models were externally validated in a prospective study. We compared the performance of our model with human experts of varying expertise levels and evaluated the AI system's potential to enhance its diagnostic accuracy.</p><p><strong>Results: </strong>The retrospective study included 1579 participants. The multimodal model achieved an AUC of 0.9870 on the internal test set, outperforming human experts. The simplified model yielded an AUC of 0.9799. In the prospective study's external test set of 171 cases, the multimodal model achieved an AUC of 0.9740, comparable to that of a radiologist with over 10 years of experience (AUC = 0.9766). For less experienced radiologists, the AI-assisted diagnostic AUC improved from 0.6667 to 0.9006.</p><p><strong>Conclusions: </strong>This AI-based screening application effectively facilitates early diagnosis of BA and serves as a valuable reference for addressing common challenges in rare diseases. The model's high accuracy and its ability to enhance the diagnostic performance of human experts underscore its potential for significant clinical impact.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"127"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03962-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early diagnosis of biliary atresia (BA) is crucial for improving patient outcomes, yet remains a significant global challenge. This challenge may be ameliorated through the application of artificial intelligence (AI). Despite the promise of AI in medical diagnostics, its application to multimodal BA data has not yet achieved substantial breakthroughs. This study aims to leverage diverse data sources and formats to develop an intelligent diagnostic system for BA.

Methods: We constructed the largest known multimodal BA dataset, comprising ultrasound images, clinical data, and laboratory results. Using this dataset, we developed a novel deep learning model and simplified it using easily obtainable data, eliminating the need for blood samples. The models were externally validated in a prospective study. We compared the performance of our model with human experts of varying expertise levels and evaluated the AI system's potential to enhance its diagnostic accuracy.

Results: The retrospective study included 1579 participants. The multimodal model achieved an AUC of 0.9870 on the internal test set, outperforming human experts. The simplified model yielded an AUC of 0.9799. In the prospective study's external test set of 171 cases, the multimodal model achieved an AUC of 0.9740, comparable to that of a radiologist with over 10 years of experience (AUC = 0.9766). For less experienced radiologists, the AI-assisted diagnostic AUC improved from 0.6667 to 0.9006.

Conclusions: This AI-based screening application effectively facilitates early diagnosis of BA and serves as a valuable reference for addressing common challenges in rare diseases. The model's high accuracy and its ability to enhance the diagnostic performance of human experts underscore its potential for significant clinical impact.

开发基于人工智能的多模式诊断系统,用于早期检测胆道闭锁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信