Machine learning approach on plasma proteomics identifies signatures associated with obesity in the KORA FF4 cohort.

IF 5.4 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jiefei Niu, Jonathan Adam, Thomas Skurk, Jochen Seissler, Qiuling Dong, Esienanwan Efiong, Christian Gieger, Annette Peters, Sapna Sharma, Harald Grallert
{"title":"Machine learning approach on plasma proteomics identifies signatures associated with obesity in the KORA FF4 cohort.","authors":"Jiefei Niu, Jonathan Adam, Thomas Skurk, Jochen Seissler, Qiuling Dong, Esienanwan Efiong, Christian Gieger, Annette Peters, Sapna Sharma, Harald Grallert","doi":"10.1111/dom.16264","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study investigated the role of plasma proteins in obesity to identify predictive biomarkers and explore underlying biological mechanisms.</p><p><strong>Methods: </strong>In the Cooperative Health Research in the Region of Augsburg (KORA) FF4 study, 809 proteins were measured in 2045 individuals (564 obese and 1481 non-obese). Multivariate logistic regression adjusted for confounders (basic and full models) was used to identify obesity-associated proteins. Priority-Lasso was applied for feature selection, followed by machine learning models (support vector machine [SVM], random forest [RF], k-nearest neighbour [KNN] and adaptive boosting [Adaboost]) for prediction. Correlation and enrichment analyses were performed to elucidate relationships between protein biomarkers, obesity risk factors and perturbed pathways. Mendelian randomisation (MR) assessed causal links between proteins and obesity.</p><p><strong>Results: </strong>A total of 16 proteins were identified as significantly associated with obesity through multivariable logistic regression in the basic model and subsequent Priority-Lasso analysis. Enrichment analyses highlighted immune response, lipid metabolism and inflammation regulation were linked to obesity. Machine learning models demonstrated robust predictive performance with area under the curves (AUC) of 0.820 (SVM), 0.805 (RF), 0.791 (KNN) and 0.819 (Adaboost). All 16 proteins correlated with obesity-related risk factors such as blood pressure and lipid levels. MR analysis identified AFM, CRP and CFH as causal and potentially modifiable proteins.</p><p><strong>Conclusions: </strong>The protein signatures identified in our study showed promising predictive potential for obesity. These findings warrant further investigation to evaluate their clinical applicability, offering insights into obesity prevention and treatment strategies.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: This study investigated the role of plasma proteins in obesity to identify predictive biomarkers and explore underlying biological mechanisms.

Methods: In the Cooperative Health Research in the Region of Augsburg (KORA) FF4 study, 809 proteins were measured in 2045 individuals (564 obese and 1481 non-obese). Multivariate logistic regression adjusted for confounders (basic and full models) was used to identify obesity-associated proteins. Priority-Lasso was applied for feature selection, followed by machine learning models (support vector machine [SVM], random forest [RF], k-nearest neighbour [KNN] and adaptive boosting [Adaboost]) for prediction. Correlation and enrichment analyses were performed to elucidate relationships between protein biomarkers, obesity risk factors and perturbed pathways. Mendelian randomisation (MR) assessed causal links between proteins and obesity.

Results: A total of 16 proteins were identified as significantly associated with obesity through multivariable logistic regression in the basic model and subsequent Priority-Lasso analysis. Enrichment analyses highlighted immune response, lipid metabolism and inflammation regulation were linked to obesity. Machine learning models demonstrated robust predictive performance with area under the curves (AUC) of 0.820 (SVM), 0.805 (RF), 0.791 (KNN) and 0.819 (Adaboost). All 16 proteins correlated with obesity-related risk factors such as blood pressure and lipid levels. MR analysis identified AFM, CRP and CFH as causal and potentially modifiable proteins.

Conclusions: The protein signatures identified in our study showed promising predictive potential for obesity. These findings warrant further investigation to evaluate their clinical applicability, offering insights into obesity prevention and treatment strategies.

血浆蛋白质组学的机器学习方法确定了 KORA FF4 队列中与肥胖相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes, Obesity & Metabolism
Diabetes, Obesity & Metabolism 医学-内分泌学与代谢
CiteScore
10.90
自引率
6.90%
发文量
319
审稿时长
3-8 weeks
期刊介绍: Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信