Jiefei Niu, Jonathan Adam, Thomas Skurk, Jochen Seissler, Qiuling Dong, Esienanwan Efiong, Christian Gieger, Annette Peters, Sapna Sharma, Harald Grallert
{"title":"Machine learning approach on plasma proteomics identifies signatures associated with obesity in the KORA FF4 cohort.","authors":"Jiefei Niu, Jonathan Adam, Thomas Skurk, Jochen Seissler, Qiuling Dong, Esienanwan Efiong, Christian Gieger, Annette Peters, Sapna Sharma, Harald Grallert","doi":"10.1111/dom.16264","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study investigated the role of plasma proteins in obesity to identify predictive biomarkers and explore underlying biological mechanisms.</p><p><strong>Methods: </strong>In the Cooperative Health Research in the Region of Augsburg (KORA) FF4 study, 809 proteins were measured in 2045 individuals (564 obese and 1481 non-obese). Multivariate logistic regression adjusted for confounders (basic and full models) was used to identify obesity-associated proteins. Priority-Lasso was applied for feature selection, followed by machine learning models (support vector machine [SVM], random forest [RF], k-nearest neighbour [KNN] and adaptive boosting [Adaboost]) for prediction. Correlation and enrichment analyses were performed to elucidate relationships between protein biomarkers, obesity risk factors and perturbed pathways. Mendelian randomisation (MR) assessed causal links between proteins and obesity.</p><p><strong>Results: </strong>A total of 16 proteins were identified as significantly associated with obesity through multivariable logistic regression in the basic model and subsequent Priority-Lasso analysis. Enrichment analyses highlighted immune response, lipid metabolism and inflammation regulation were linked to obesity. Machine learning models demonstrated robust predictive performance with area under the curves (AUC) of 0.820 (SVM), 0.805 (RF), 0.791 (KNN) and 0.819 (Adaboost). All 16 proteins correlated with obesity-related risk factors such as blood pressure and lipid levels. MR analysis identified AFM, CRP and CFH as causal and potentially modifiable proteins.</p><p><strong>Conclusions: </strong>The protein signatures identified in our study showed promising predictive potential for obesity. These findings warrant further investigation to evaluate their clinical applicability, offering insights into obesity prevention and treatment strategies.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study investigated the role of plasma proteins in obesity to identify predictive biomarkers and explore underlying biological mechanisms.
Methods: In the Cooperative Health Research in the Region of Augsburg (KORA) FF4 study, 809 proteins were measured in 2045 individuals (564 obese and 1481 non-obese). Multivariate logistic regression adjusted for confounders (basic and full models) was used to identify obesity-associated proteins. Priority-Lasso was applied for feature selection, followed by machine learning models (support vector machine [SVM], random forest [RF], k-nearest neighbour [KNN] and adaptive boosting [Adaboost]) for prediction. Correlation and enrichment analyses were performed to elucidate relationships between protein biomarkers, obesity risk factors and perturbed pathways. Mendelian randomisation (MR) assessed causal links between proteins and obesity.
Results: A total of 16 proteins were identified as significantly associated with obesity through multivariable logistic regression in the basic model and subsequent Priority-Lasso analysis. Enrichment analyses highlighted immune response, lipid metabolism and inflammation regulation were linked to obesity. Machine learning models demonstrated robust predictive performance with area under the curves (AUC) of 0.820 (SVM), 0.805 (RF), 0.791 (KNN) and 0.819 (Adaboost). All 16 proteins correlated with obesity-related risk factors such as blood pressure and lipid levels. MR analysis identified AFM, CRP and CFH as causal and potentially modifiable proteins.
Conclusions: The protein signatures identified in our study showed promising predictive potential for obesity. These findings warrant further investigation to evaluate their clinical applicability, offering insights into obesity prevention and treatment strategies.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.