Hanjing Wang, Yayun Lv, He Zhao, Zhihong Hao, Xiaoyu Zhai, Yan Wang, Jingjing Qiu, Liang Chen, Jiamin Zhou, Limei Cui, Yan Sun
{"title":"Transforming Growth Factor-β-Activated Protein 1 (TAK1) Regulates Necroptosis in Age-Related Hearing Loss.","authors":"Hanjing Wang, Yayun Lv, He Zhao, Zhihong Hao, Xiaoyu Zhai, Yan Wang, Jingjing Qiu, Liang Chen, Jiamin Zhou, Limei Cui, Yan Sun","doi":"10.1111/acel.70013","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation plays an important role in age-related hearing loss (ARHL). Transforming growth factor-β-activated protein 1 (TAK1), a key factor upstream of inflammatory pathways, mediates various cell death pathways, potentially influencing the survival and death of cochlear hair cells. The DBA/2 J mouse model and the HEI-OC1 cell line were used to investigate the mechanism of TAK1-mediated inflammation in ARHL. Hematoxylin and eosin staining revealed significant histological damage in the cochlea of 16-week-old mice, along with an increase in auditory-evoked brainstem response thresholds. Concurrently, TAK1 mRNA levels decreased sharply, and necroptosis significantly increased in 16-week-old mice, indicating a correlation between TAK1 expression, necroptosis, and hearing loss. We subsequently constructed TAK1 knockdown and overexpression HEI-OC1 cells for further investigation. TAK1 knockdown in HEI-OC1 cells significantly activated the necroptotic pathway, characterized by an increase in necroptosis, along with up-regulation of RIPK3 and MLKL, and down-regulation of NF-κB and Caspase 8. However, TAK1 overexpression successfully prevented necroptosis in HEI-OC1 cells, leading to decreases in NF-κB, Caspase 8, RIPK3, and MLKL. We further treated TAK1 knockdown cells with necroptosis inhibitors and found that they could reverse the damage caused by TAK1 knockdown in HEI-OC1 cells. This preliminary study shows that TAK1-mediated necroptotic pathways play an important role in the pathogenesis of ARHL.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70013"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation plays an important role in age-related hearing loss (ARHL). Transforming growth factor-β-activated protein 1 (TAK1), a key factor upstream of inflammatory pathways, mediates various cell death pathways, potentially influencing the survival and death of cochlear hair cells. The DBA/2 J mouse model and the HEI-OC1 cell line were used to investigate the mechanism of TAK1-mediated inflammation in ARHL. Hematoxylin and eosin staining revealed significant histological damage in the cochlea of 16-week-old mice, along with an increase in auditory-evoked brainstem response thresholds. Concurrently, TAK1 mRNA levels decreased sharply, and necroptosis significantly increased in 16-week-old mice, indicating a correlation between TAK1 expression, necroptosis, and hearing loss. We subsequently constructed TAK1 knockdown and overexpression HEI-OC1 cells for further investigation. TAK1 knockdown in HEI-OC1 cells significantly activated the necroptotic pathway, characterized by an increase in necroptosis, along with up-regulation of RIPK3 and MLKL, and down-regulation of NF-κB and Caspase 8. However, TAK1 overexpression successfully prevented necroptosis in HEI-OC1 cells, leading to decreases in NF-κB, Caspase 8, RIPK3, and MLKL. We further treated TAK1 knockdown cells with necroptosis inhibitors and found that they could reverse the damage caused by TAK1 knockdown in HEI-OC1 cells. This preliminary study shows that TAK1-mediated necroptotic pathways play an important role in the pathogenesis of ARHL.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.