Christian Milani, Giulia Longhi, Giulia Alessandri, Federico Fontana, Martina Viglioli, Chiara Tarracchini, Leonardo Mancabelli, Gabriele Andrea Lugli, Silvia Petraro, Chiara Argentini, Rosaria Anzalone, Alice Viappiani, Elisa Carli, Federica Vacondio, Douwe van Sinderen, Francesca Turroni, Marco Mor, Marco Ventura
{"title":"Functional modulation of the human gut microbiome by bacteria vehicled by cheese.","authors":"Christian Milani, Giulia Longhi, Giulia Alessandri, Federico Fontana, Martina Viglioli, Chiara Tarracchini, Leonardo Mancabelli, Gabriele Andrea Lugli, Silvia Petraro, Chiara Argentini, Rosaria Anzalone, Alice Viappiani, Elisa Carli, Federica Vacondio, Douwe van Sinderen, Francesca Turroni, Marco Mor, Marco Ventura","doi":"10.1128/aem.00180-25","DOIUrl":null,"url":null,"abstract":"<p><p>Since cheese is one of the most commonly and globally consumed fermented foods, scientific investigations in recent decades have focused on determining the impact of this dairy product on human health and well-being. However, the modulatory effect exerted by the autochthonous cheese microbial community on the taxonomic composition and associated functional potential of the gut microbiota of human is still far from being fully dissected or understood. Here, through the use of an <i>in vitro</i> human gut-simulating cultivation model in combination with multi-omics approaches, we have shown that minor rather than dominant bacterial players of the cheese microbiota are responsible for gut microbiota modulation of cheese consumers. These include taxa from the genera <i>Enterococcus</i>, <i>Bacillus</i>, <i>Clostridium,</i> and <i>Hafnia</i>. Indeed, they contribute to expand the functional potential of the intestinal microbial ecosystem by introducing genes responsible for the production of metabolites with relevant biological activity, including genes involved in the synthesis of vitamins, short-chain fatty acids, and amino acids. Furthermore, tracing of cheese microbiota-associated bacterial strains in fecal samples from cheese consumers provided evidence of horizontal transmission events, enabling the detection of particular bacterial strains transferred from cheese to humans. Moreover, transcriptomic and metabolomic analyses of a horizontally transmitted (cheese-to-consumer) bacterial strain, i.e., <i>Hafnia paralvei</i> T10, cultivated in a human gut environment-simulating medium, confirmed the concept that cheese-derived bacteria may expand the functional arsenal of the consumer's gut microbiota. This highlights the functional and biologically relevant contributions of food microbes acquired through cheese consumption on the human health.IMPORTANCEDiet is universally recognized as the primary factor influencing and modulating the human intestinal microbiota both taxonomically and functionally. In this context, cheese, being a fermented food with its own microbiota, serves not only as a source of nourishment for humans, but also as a source of nutrients for the consumer's gut microbiota. Additionally, it may act as a vehicle for autochthonous food-associated microorganisms which undergo transfer from cheese to the consumer, potentially influencing host gut health. The current study highlights not only that cheese microbiota-associated bacteria can be traced in the human gut microbiota, but also that they may expand the functional repertoire of the human gut microbiota, with potentially significant implications for human health.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0018025"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00180-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since cheese is one of the most commonly and globally consumed fermented foods, scientific investigations in recent decades have focused on determining the impact of this dairy product on human health and well-being. However, the modulatory effect exerted by the autochthonous cheese microbial community on the taxonomic composition and associated functional potential of the gut microbiota of human is still far from being fully dissected or understood. Here, through the use of an in vitro human gut-simulating cultivation model in combination with multi-omics approaches, we have shown that minor rather than dominant bacterial players of the cheese microbiota are responsible for gut microbiota modulation of cheese consumers. These include taxa from the genera Enterococcus, Bacillus, Clostridium, and Hafnia. Indeed, they contribute to expand the functional potential of the intestinal microbial ecosystem by introducing genes responsible for the production of metabolites with relevant biological activity, including genes involved in the synthesis of vitamins, short-chain fatty acids, and amino acids. Furthermore, tracing of cheese microbiota-associated bacterial strains in fecal samples from cheese consumers provided evidence of horizontal transmission events, enabling the detection of particular bacterial strains transferred from cheese to humans. Moreover, transcriptomic and metabolomic analyses of a horizontally transmitted (cheese-to-consumer) bacterial strain, i.e., Hafnia paralvei T10, cultivated in a human gut environment-simulating medium, confirmed the concept that cheese-derived bacteria may expand the functional arsenal of the consumer's gut microbiota. This highlights the functional and biologically relevant contributions of food microbes acquired through cheese consumption on the human health.IMPORTANCEDiet is universally recognized as the primary factor influencing and modulating the human intestinal microbiota both taxonomically and functionally. In this context, cheese, being a fermented food with its own microbiota, serves not only as a source of nourishment for humans, but also as a source of nutrients for the consumer's gut microbiota. Additionally, it may act as a vehicle for autochthonous food-associated microorganisms which undergo transfer from cheese to the consumer, potentially influencing host gut health. The current study highlights not only that cheese microbiota-associated bacteria can be traced in the human gut microbiota, but also that they may expand the functional repertoire of the human gut microbiota, with potentially significant implications for human health.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.