Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches.
Andrés Halabi Diaz, Mario Duque-Noreña, Elizabeth Rincón, Eduardo Chamorro
{"title":"Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches.","authors":"Andrés Halabi Diaz, Mario Duque-Noreña, Elizabeth Rincón, Eduardo Chamorro","doi":"10.1021/acs.jcim.4c02401","DOIUrl":null,"url":null,"abstract":"<p><p>Nitroaromatic compounds (NAs) are widely used in industrial applications but pose significant genotoxic risks, necessitating accurate mutagenicity prediction for chemical safety assessments. This study integrates conceptual density functional theory (CDFT) descriptors with explainable no-code machine learning (ML) models to predict NA mutagenicity based on Ames test results. Following OECD QSAR guidelines, feature selection and model development were performed using decision-tree-based algorithms (Random Tree, JCHAID*, SPAARC) and multilayer perceptrons (MLPs). These models exhibited high predictive accuracy (internal: >80%, κ = 0.21-0.37; external: ∼90%, κ = 0.41-0.62) with strong interpretability. The study also explores the role of metabolic activation and aqueous-phase descriptors, evaluating a novel electronic analog to LogP (LogQP) to assess hydrophobicity-mutagenicity relationships. Results demonstrate that aqueous-phase electronic properties and electrophilicity descriptors outperform vacuum-based methods in mutagenicity prediction. The combination of CDFT descriptors with shallow ML models proves to be a robust, interpretable, and accessible framework for predictive toxicology. This approach enhances chemical risk assessment and bridges computational chemistry with toxicology for regulatory applications.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02401","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitroaromatic compounds (NAs) are widely used in industrial applications but pose significant genotoxic risks, necessitating accurate mutagenicity prediction for chemical safety assessments. This study integrates conceptual density functional theory (CDFT) descriptors with explainable no-code machine learning (ML) models to predict NA mutagenicity based on Ames test results. Following OECD QSAR guidelines, feature selection and model development were performed using decision-tree-based algorithms (Random Tree, JCHAID*, SPAARC) and multilayer perceptrons (MLPs). These models exhibited high predictive accuracy (internal: >80%, κ = 0.21-0.37; external: ∼90%, κ = 0.41-0.62) with strong interpretability. The study also explores the role of metabolic activation and aqueous-phase descriptors, evaluating a novel electronic analog to LogP (LogQP) to assess hydrophobicity-mutagenicity relationships. Results demonstrate that aqueous-phase electronic properties and electrophilicity descriptors outperform vacuum-based methods in mutagenicity prediction. The combination of CDFT descriptors with shallow ML models proves to be a robust, interpretable, and accessible framework for predictive toxicology. This approach enhances chemical risk assessment and bridges computational chemistry with toxicology for regulatory applications.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.